Esercizio n°1 (punti 6)

Un impianto di sollevamento (vedi figura 1) è costituito da due pompe uguali P1 e P2 che sollevano acqua, rispettivamente da un serbatoio A posizionato a 30 m s.l.m. e da un serbatoio B posizionato a 28 m s.l.m.. Le tubazioni di mandata in uscita dalle pompe convergono in un punto N (quota 16 m s.l.m.), da cui si dipartono le tubazioni NC e ND che sono rispettivamente collegate al serbatoio C (quota 24 m s.l.m.) e al serbatoio D (quota 23 m s.l.m.). Le tubazioni hanno le caratteristiche riportate in tabella 1. Calcolare le portate sollevate dalle due pompe e in arrivo ai serbatoi di valle C e D nelle due condizioni di funzionamento sapendo che la curva caratteristica delle pompe a n=870 giri/min è rappresentata dall'equazione H=r-sQ 2 con r= 30 m e s= 180 s 2 /m 5 , e che le pompe P1 e P2 operano rispettivamente a n_1 =870 giri/min e n_2 =1170 giri/min. Calcolare anche la potenza assorbita dalle pompe assumendo per le stesse pompe un rendimento pari a 0.7.

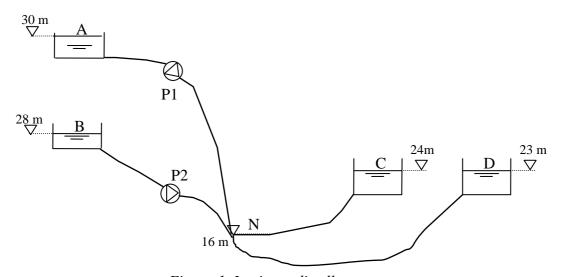


Figura 1. Impianto di sollevamento

Tratto	Lunghezza [m]	Diametro [m]	$\gamma_B [m^{1/2}]$
A-N	4500	0.4	0.12
B-N	4000	0.5	0.12
N-C	500	0.4	0.12

0.5

0.12

Tabella 1. Caratteristiche delle tubazioni

Per il calcolo della cadente J si utilizzi la relazione $J = \beta \frac{Q^2}{D^5}$, con $\beta = 0.000857 \cdot \left(1 + \frac{2 \cdot \gamma_B}{\sqrt{D}}\right)^2$.

400

N-D

È possibile modificare l'impianto mediante l'inserimento di valvole di regolazione per fare in modo che le portate transitanti nei vari tronchi dell'impianto siano tutte uguali? In caso affermativo spiegare dove è necessario inserire tali valvole e indicare quale è il valore di portata nella nuova configurazione con saracinesche inserite.

Esercizio n°2 (punti 4)

I dati di altezza di pioggia (mm) massima annuale osservati ad una stazione pluviometrica per durate di 15, 30,45 e 60 minuti sono riportati in Tabella 1.

	h	(mm)	
15	30	45	60
20.67	23.13	26.53	28.07
12.03	27.76	31.46	41.02
26.53	33.00	37.63	42.57
38.25	69.40		122.76
14.19	26.83		41.95
16.35		21.90	23.13
59.84		91.61	116.28
30.54	31.77	34.55	35.16
32.08	35.47	42.26	45.65
28.99	45.96	62.00	63.85
45.96	61.69	62.92	63.23
16.35		18.82	20.97
30.23	42.26	46.88	47.19
19.74	29.30	42.26	44.11
43.80	44.11		54.29
28.69	30.23		36.40
22.83	24.68		28.07
13.57	19.74	25.91	34.85
15.11		20.97	21.28
26.22	63.23	66.01	69.40

Si valutino:

- a) i parametri della curva di possibilità climatica per un tempo di ritorno di 5 anni;
- b) l'altezza di pioggia con tempo di ritorno di 5 anni per una durata di 20 minuti.

Spiegare la procedura adottata e commentare i passaggi effettuati per ricavare i parametri a ed *n* illustrandone il significato

Formule:

Distribuzione di Gumbel

$$F_{x}(x) = \exp\left\{-\exp\left[-\frac{(x-u)}{\alpha}\right]\right\}; \qquad \sigma^{2} = 1.645\alpha^{2}; \qquad \mu = u + 0.5772\alpha;$$

Modello lineare
$$y = a + bx; \qquad a = \overline{y} - b\overline{x}; \qquad b = \frac{\sum x_i y_i - n\overline{x}\overline{y}}{\sum x_i^2 - n(\overline{x})^2};$$

(N.B. costruire la curva di possibilità climatica in modo da avere le altezze di pioggia in mm e le durate in ore)

Esercizio n°3 (punti 5)

Si consideri una carreggiata larga 5 m, asfaltata (coefficiente di afflusso ϕ =1, coefficiente di scabrezza di Strickler K=75 m^{1/3}/s) e con pendenza trasversale è S_x =1.3%. La carreggiata, lunga complessivamente 80 metri, ha pendenza longitudinale S_0 =0.8% per i primi 40 metri (dalla progressiva 0 fino alla progressiva 40) e S_0 =1.3% per i successivi 40 metri (dalla progressiva 40 fino alla progressiva 80) (vedi figura 1).

Lungo la carreggiata vi sono posizionate, in una cunetta a sezione triangolare (vedi figura 2), caditoie a grata con barre parallele alla direzione della corrente di larghezza W=0.4 m e lunghezza L=0.4 m ad interasse di 20 m. Calcolare la larghezza massima di allagamento a fronte di una precipitazione di intensità 90 mm/h.

N.B. Si calcoli la portata intercettata e by-passata dalle caditoie e si disegni l'andamento dell'area allagata in funzione della progressiva e si commenti il risultato.

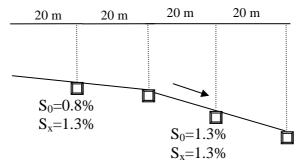


Figura 1. Sezione longitudinale della sede stradale

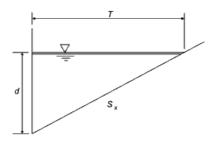


Figura 2. Sezione trasversale della cunetta.

Equazioni:

$$Q = C_f K S_x^{5/3} T^{8/3} S_0^{1/2}$$
 essendo C_f =0.376;
$$E_0 = 1 - \left(1 - \frac{W}{T}\right)^{2.67}; \qquad Q_s = Q(1 - E_0);$$

$$v_0 = 2.54 L^{0.51}$$

$$R_{f} = \begin{cases} I - K_{f} (V - v_{0}) & V \geq v_{0} \\ I & V \leq v_{0} \end{cases}$$
 essendo K_{f} =0.0295;

$$R_s = \left(I + \frac{K_s V^{1.8}}{S_x L^{2.3}}\right)^{-1}$$
 essendo $K_s = 0.0828$;

Domande (punti 3 ciascuna)

- 1. Fissate le ipotesi di calcolo di una turbomacchina, disegnare i triangoli di velocità all'ingresso e all'uscita di una pompa centrifuga e ricavare l'equazione di Eulero in condizioni di progetto, descrivendo i singoli passaggi.
- 2. Definizione di NPSH. Calcolare la posizione della pompa rispetto al serbatoio di alimentazione una volta noto l' $NPSH_R$.
- 3. Che cosa è la ventilazione parallela indiretta? Quando viene utilizzata?
- 4. Che cosa rappresenta il coefficiente d' afflusso (φ)? Come può essere stimato? Come varia il valore del coefficiente di afflusso con il tempo di ritorno T?
- 5. Disegnare e descrivere il funzionamento del dispositivo di cacciata di tipo Contarino.

Esercizio n°1

Tabella caratteristiche tubazioni

Tratto	L (m)	D (m)	γв	β	$\alpha = \beta L/D^5$
AN	4500	0.4	0.12	0.00163	716.67
BN	4000	0.5	0.12	0.00154	196.80
NC	500	0.4	0.12	0.00163	79.63
ND	400	0.5	0.12	0.00154	19.68

Curva impianto tratto AN:

$$H = z_N - z_A + \alpha_{AN} Q^2; Q = \sqrt{\frac{H - z_N + z_A}{\alpha_{AN}}}$$
 (1)

Curva impianto tratto BN:

$$H = z_N - z_B + \alpha_{BN} Q^2; Q = \sqrt{\frac{H - z_N + z_B}{\alpha_{BN}}}$$
 (2)

Curva impianto tratto NC:

$$H = z_C - z_N + \alpha_{NC} Q^2; Q = \sqrt{\frac{H - z_C + z_N}{\alpha_{NC}}}$$
 (3)

Curva impianto tratto ND:

$$H = z_D - z_N + \alpha_{ND} Q^2; Q = \sqrt{\frac{H - z_D + z_N}{\alpha_{ND}}}$$
 (4)

La curva della pompa P₁ a n=870 giri/min è rappresentata dalla seguente equazione:

$$H = r - sQ^2 = 30 - 180Q^2$$
 oppure $Q = \sqrt{\frac{30 - H}{180}}$ (5)

Applicando il Principio di similitudine fluidodinamica, si ricava l'equazione della curva della pompa P_2 a n^* =1170 giri/min:

$$\begin{cases} \frac{H}{H^*} = \left(\frac{n}{n^*}\right)^2 \\ \frac{Q}{Q^*} = \frac{n}{n^*} \end{cases} \to H^* \cdot \left(\frac{n}{n^*}\right)^2 = r - s \cdot Q^{*2} \cdot \left(\frac{n}{n^*}\right)^2 \to P_{1170:} H^* = \left(\frac{n^*}{n}\right)^2 \cdot r - s \cdot Q^{*2} = r^* - s^* \cdot Q^{*2}$$

essendo:

$$\begin{cases} r^* = \left(\frac{n^*}{n}\right)^2 r = \left(\frac{1170}{870}\right)^2 30 = 54.26m \\ s^* = s = 180 \text{ s}^2/\text{m}^5 \end{cases}$$

Quindi la curva della pompa P₂ a n*=1170 giri/min è rappresentata dalla seguente equazione:

$$H = r^* - s^* Q^2 = 54.26 - 180Q^2$$
 oppure $Q = \sqrt{\frac{54.26 - H}{180}}$ (6)

CONDIZIONE 1

Pompa P1 riportata in N

Si ottiene sottraendo la H(Q) dell'impianto AN (2) alla curva caratteristica H(Q) della pompa (eq. 5):

$$H = r - sQ^2 - z_N + z_A - \alpha_{AN}Q^2 \tag{7}$$

L'eq. (7) può essere riscritta in termini di Q(H) nel seguente modo:

$$Q = \sqrt{\frac{r - z_N + z_A - H}{s + \alpha_{AN}}} \tag{8}$$

Pompa P2 riportata in N

Si ottiene sottraendo la H(Q) dell'impianto AN (1) alla curva caratteristica H(Q) della pompa (eq. 6):

$$H = r^* - s^* Q^2 - z_N + z_B - \alpha_{BN} Q^2 \tag{9}$$

L'eq. (9) può essere riscritta in termini di Q(H) nel seguente modo:

$$Q = \sqrt{\frac{r^* - z_N + z_B - H}{s^* + \alpha_{BN}}}$$
 (10)

(P1 in N) // (P2 in N)

Per mettere in parallelo le due pompe riportate in N, si sommano la (8) e la (10); si ottiene in questo modo:

$$Q = \sqrt{\frac{r - z_N + z_A - H}{s + \alpha_{AN}}} + \sqrt{\frac{r^* - z_N + z_B - H}{s^* + \alpha_{BN}}}$$
(11)

(NC)//(ND)

Per mettere in parallelo i due tratti dell'impianto è necessario sommare le relazioni Q(H) riportate nella (3) e nella (4). Si ottiene in questo caso:

$$Q = \sqrt{\frac{H - z_C + z_N}{\alpha_{NC}}} + \sqrt{\frac{H - z_D + z_N}{\alpha_{ND}}}$$
(12)

Per risolvere l'impianto di sollevamento è necessario mettere a sistema la (11) e la (12); ciò porta alla seguente equazione, da risolvere rispetto a *H*:

$$Q = \sqrt{\frac{r - z_N + z_A - H}{s + \alpha_{AN}}} + \sqrt{\frac{r^* - z_N + z_B - H}{s^* + \alpha_{BN}}}$$
(13)

portata in arrivo al serbatoio C, si mettono a sistema la (11) e la H(Q) di (3). In questo modi si ottiene:

$$\sqrt{\frac{r - z_N + z_A - H}{s + \alpha_{AN}}} + \sqrt{\frac{r^* - z_N + z_B - H}{s^* + \alpha_{BN}}} = \sqrt{\frac{H - z_C + z_N}{\alpha_{NC}}} + \sqrt{\frac{H - z_D + z_N}{\alpha_{ND}}}$$
(14)

Andando a sostituire nella (14) i valori numerici si ottiene:

$$\sqrt{\frac{44-H}{896.67}} + \sqrt{\frac{66.26-H}{376.80}} = \sqrt{\frac{H-8}{79.63}} + \sqrt{\frac{H-7}{19.68}},$$
(15)

che risolta iterativamente porta a H = 10.30 m.

Adesso è possibile calcolare le portate che circolano nei diversi tronchi dell'impianto:

$$Q_{AN} = \sqrt{\frac{r - z_N + z_A - H}{s + \alpha_{AN}}} = \sqrt{\frac{44 - H}{896.67}} = 0.194 \text{ m}^3/\text{s}$$
 (16)

$$Q_{BN} = \sqrt{\frac{r^* - z_N + z_B - H}{s^* + \alpha_{RN}}} = \sqrt{\frac{66.26 - H}{376.80}} = 0.385 \text{ m}^3/\text{s}$$
 (17)

$$Q_{NC} = \sqrt{\frac{H - z_C + z_N}{\alpha_{NC}}} = \sqrt{\frac{H - 8}{79.63}} = 0.170 \text{ m}^3/\text{s}$$
 (18)

$$Q_{ND} = \sqrt{\frac{H - z_D + z_N}{\alpha_{ND}}} = \sqrt{\frac{H - 7}{19.68}} = 0.409 \text{ m}^3/\text{s}$$
 (19)

Entrando con la $Q_1 = Q_{AN}$ e la $Q_2 = Q_{BN}$ rispettivamente nelle curve caratteristiche delle pompe H(Q) di (5) e (6), si ottengo le prevalenze H_1 e H_2 :

$$H_1 = 30 - 180Q_1^2 = 23.24 \text{ m}$$
 (20)

$$H_2 = 54.26 - 180Q_2^2 = 27.53 \text{ m}$$
 (21)

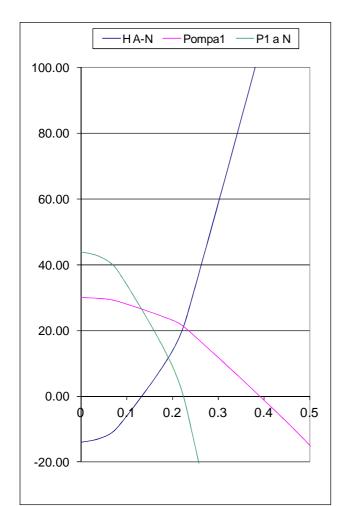
Ricordando la formula $P = \gamma QH / \eta$, si ottengono le potenze assorbite dalle pompe:

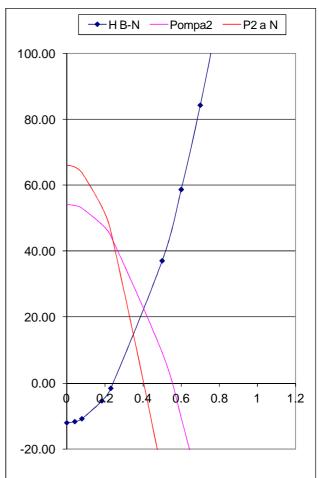
$$P_1 = \gamma Q_1 H_1 / \eta = 63.1 \text{ KW}$$
 (22)

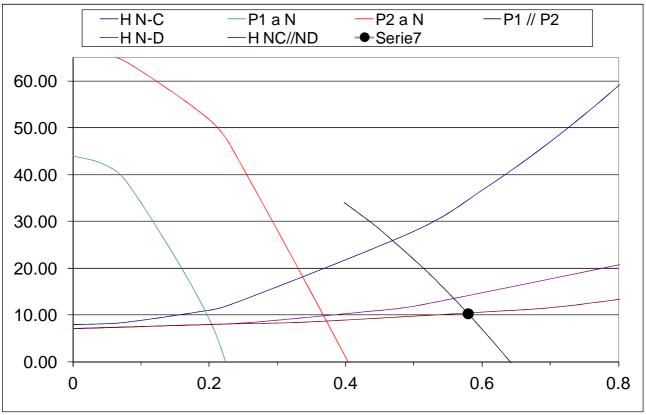
$$P_2 = \gamma Q_2 H_2 / \eta = 148.6 \text{ KW}$$
 (23)

CONDIZIONE 2

Per rendere uguali tutte le portate bisogna inserire saracinesche nei tratti BN e ND, facendo in modo che le curve degli impianti relativi a questi tratti siano rispettivamente uguali a quelle dei tratti AN e NC. In questo caso, l'eqq. (14) e (15) diventeranno:


$$2\sqrt{\frac{r-z_N+z_A-H}{s+\alpha_{AN}}} = 2\sqrt{\frac{H-z_C+z_N}{\alpha_{NC}}}$$
 (24)


Andando a sostituire nella (14) i valori numerici si ottiene:


$$2\sqrt{\frac{44-H}{896.67}} = 2\sqrt{\frac{H-8}{79.63}}\,\,\,(25)$$

da cui risulta H = 10.94 m. La portata che transita in uno qualunque di questi tratti è pari a:

$$Q = \sqrt{\frac{44 - H}{896.67}} = \sqrt{\frac{H - 8}{79.63}} = 0.192 \text{ m}^3/\text{s}.$$
 (26)

Esercizio n°2

	15	30	45	60				
	20.67		26.53	28.07				
	12.03		31.46	41.02				
	26.53	33.00	37.63	42.57				
	38.25	69.40		122.76				
	14.19	26.83		41.95				
	16.35		21.90	23.13				
	59.84		91.61	116.28				
	30.54	31.77	34.55	35.16				
	32.08	35.47	42.26	45.65				
	28.99	45.96	62.00	63.85				
	45.96	61.69	62.92	63.23				
	16.35		18.82	20.97				
	30.23	42.26	46.88	47.19				
	19.74	29.30	42.26	44.11				
	43.80	44.11		54.29				
	28.69	30.23		36.40				
	22.83	24.68		28.07				
	13.57		25.91	34.85				
	15.11		20.97	21.28				
	26.22	63.23	66.01	69.40				
Media	27.10	38.04	42.11	49.01				
var	155.25	r -	426.19	772.52				
u	21.49		32.82	36.50				
alfa	9.715		16.096	21.671				
Т	5.000	5.000	5.000	5.000				
h	36.061	48.978	56.966	69.009				
t	0.250	0.500	0.750	1.000				
	0.505	0.004	4.040	4.004		0.000	,,	0.004
logh	3.585 -1.386		4.042 -0.288	4.234 0.000	ymedio xmedio	-0.592	xymedio	-2.331 4.000
logt	-1.300	-0.693	-0.200	0.000	xmedio	-0.592	11	4.000
xiyi	-4.970	-2.697	-1.163	0.000	Sommaxiyi	-8.830		
xi2	1.922	0.480	0.083	0.000	Sommaxi2	2.485		
B	0.454							
B=n A	0.454 4.207							
	67.149							
а	07.143							
hcalc	35.79		58.93	67.15				
h20'	40.78	mm						

Esercizio n°3

1°LIVEL	LETTA													
Se	de strad	ale		ip	90	mm/h	φ	1						
So	0.8	%		Ca	ditoia R	eticuli	ne							
Sx	1.3	%		Lungh	า	0.4	m							
Lungh	40	m		Largh	W	0.4	m							
Largh	5	m												
Ks	75	m1/3s	s-1	Intera	sse	20	m							
Т	1.5	m		V Sp.	.Over	1.59	m/s							
				·										
Calcolo	la porta	ata pe	r metro	linea	are di s	trada								
Q1	0.0001		0.125											
Portata					in cur	etta								
Qmax	0.0053						T^8/3	*Sx^5/3	3*So^1/2	:				
Portata					-, -									
Qt	0.0025		2.500	l/s	<qmax< td=""><td>(</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></qmax<>	(
						-								
2°LIVEL	LETTA													
	de strad	ale		ip	90	mm/h	Φ	1						
So	1.3				iditoia R									
Sx	1.3			Lungh		0.4								
Lungh	40			Largh		0.4								
Largh		m		Largi		0.4	111							
Ks		m1/3s	:_1	Intera	222	20	m							
T	1.5)- I	V Sp.		1.59							_	
1	1.5	111		v op.	. Ovei	1.55	111/3							
Calcolo	la part	ata no	r motro	linos	ro di c	trada							_	
Q1	0.0001		0.125		ile ui s	uaua								
					in our	0440								
Portata Qmax	0.0068						TAO/2 ⁹	*Cv^E/1	 3*So^1/2					
			0.013	1/5	Q=0.37	0 1/2	176/3	3x/5/3	30.1/2					
Portata Qt	0.0025		2.500	1/0	<qmax< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></qmax<>									
Ql	0.0025	1113/5	2.500	1/5	<qmax< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></qmax<>									
Dianama	1-													
Riassun		т												1
Caditoia		T												
1		1.13		.3 —										
2	40	1.23												
4	60	1.16	_						1					
5	80	1.17	1											
			1 1	.2								\top	\neg	_
			T (m)				/					\top		
			⊬			*								
] 1	.1								+	-	 ↓
				1 —				ļ	ļ		<u> </u>	—	\dashv	
				0	10	20	3	30	40 5	0 6	60	70	80	90
								Dro	gressiva	(m)				
								FIU	gicosiva	(111)				
			Ц											

Calcolo	delle p	ortate	intercet	tate e	by-pass	ate da	alle s	inaole	e cadito	ie		
1°LIVEL												
Caditoia	1		Progres	siva	20							
Q	0.0025	m3/s			<qmax=< td=""><td>=</td><td>5.345</td><td>5</td><td>l/s</td><td></td><td></td><td></td></qmax=<>	=	5.345	5	l/s			
Т	1.1281								So^1/2))^	(3/8)		
Eo	0.6894				Eo=1-(1					,		
Qw	0.0017	m3/s			Qw=Eo*							
Qs	0.0008				Qs=(1-E							
A	0.0083			d2	0.015 r							
V	0.3022		<v0=17< td=""><td></td><td>tata front</td><td></td><td>ta int</td><td>ercetta</td><td>ata</td><td></td><td></td><td></td></v0=17<>		tata front		ta int	ercetta	ata			
Rf	1	111,70	110 111	о ро.	lata iront	aro ta		0,00,0	atu .			
Rs	0.1412											
Qint	0.0018	m3/s	1.833	I/e								
Qb	0.0010											
QD	0.0007	1110/3	0.007	1/3								
Caditoia	2		Progres	civo	40							
	0.0032	m2/a			<qmax=< td=""><td></td><td>5.345</td><td></td><td>l/s</td><td></td><td></td><td></td></qmax=<>		5.345		l/s			
Q T	1.2327		3.107	1/5					/s So^1/2))^	(3/8)		
		111						·5/3 S	ου \(\Z))'\	(3/0)		
Eo	0.6492	0 /			Eo=1-(1		∠.७ <i>1</i>					
Qw	0.0021				Qw=Eo*							
Qs	0.0011				Qs=(1-E							
A	0.0099			d2	0.016 r							
V	0.3206	m/s	<v0=1.7< td=""><td>8 por</td><td>tata front</td><td>ale tut</td><td>ta int</td><td>ercetta</td><td>ata</td><td></td><td></td><td></td></v0=1.7<>	8 por	tata front	ale tut	ta int	ercetta	ata			
Rf	1											
Rs	0.1288											
Qint	0.0022											
Qb	0.001	m3/s	0.968	l/s								
2°LIVEL	LETTA											
Caditoia	3		Progres		60							
	0.0035	m3/s	3.468	l/s	<qmax=< td=""><td></td><td>6.813</td><td></td><td>l/s</td><td></td><td></td><td></td></qmax=<>		6.813		l/s			
Т	1.1644	m			T=(Q/(0.	.376*k	(s*Sx	^ 5/3*S	3o^1/2))^	(3/8)		
Eo	0.6749				Eo=1-(1	-W/T) [,]	^2.67					
Qw	0.0023	m3/s			Qw=Eo*	'Q						
Qs	0.0011	m3/s			Qs=(1-E	o)*Q						
Α	0.0088	m2		d2	0.015 r	n						
V	0.3935	m/s	<v0=1.7< td=""><td>'8 por</td><td>tata front</td><td>ale tut</td><td>ta int</td><td>ercett</td><td>ata</td><td></td><td></td><td></td></v0=1.7<>	'8 por	tata front	ale tut	ta int	ercett	ata			
Rf	1			-								
Rs	0.0928											
Qint	0.0024	m3/s	2.445	l/s								
Qb	0.001			l/s								
Caditoia	4		Progres	siva	80							
Q	0.0035	m3/s			<qmax=< td=""><td>=</td><td>6.813</td><td>3</td><td>l/s</td><td></td><td></td><td></td></qmax=<>	=	6.813	3	l/s			
T	1.1713								So^1/2))^	(3/8)		
Eo	0.6723				Eo=1-(1				//	,		
Qw	0.0024	m3/s			Qw=Eo*							
Qs	0.0012				Qs=(1-E							
A	0.0089			d2	0.015 r							
V	0.395		<\∩-1 7		tata front		ta int	ercett	ata			
Rf	0.535	111/3	- VO- 1.7	o poi	tata nont	aio iui	.ca iiil	010011	u.u			
Rs	0.0922											
Qint	0.0922	m3/c	2.475	I/e	-							
	0.0025											
Qb	0.001	1113/8	1.048	1/5								