

Università degli Studi di FERRARA - Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Civile

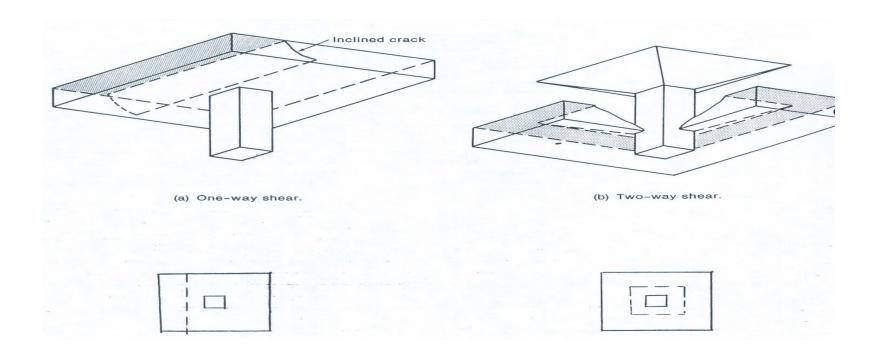
Corso di Costruzioni in C.A. e C.A.P.

PUNZONAMENTO (PUNCHING)

Prof. Ing. Nerio Tullini

Nelle piastre possono verificarsi due meccanismi di rottura per taglio:

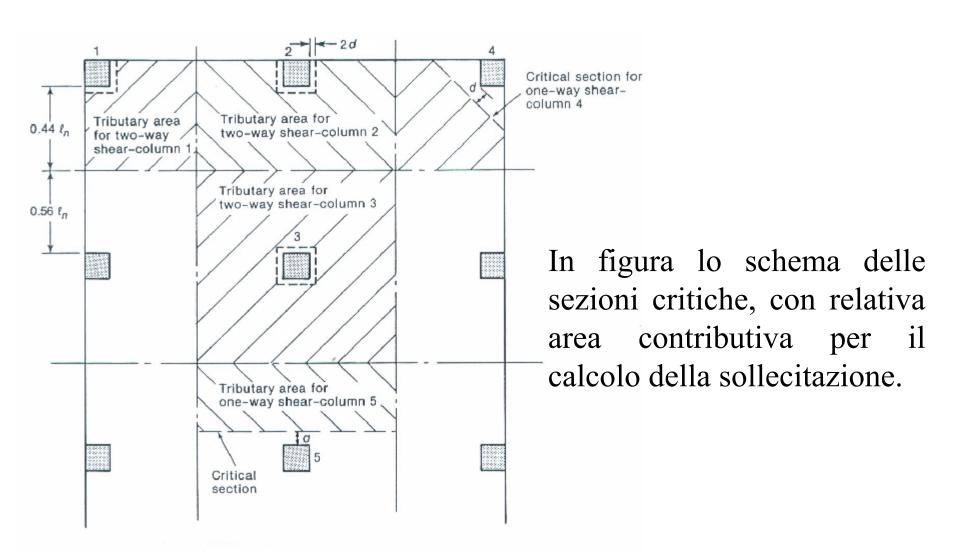
- 1) Taglio 1D (One-way shear)
- 2) Punzonamento (Punching o Two-way shear)



La rottura per Taglio 1D avviene in piastre portanti principalmente in una direzione (la piastra è assimilabile ad una trave), è rara in piastre con appoggi puntiformi a maglia circa quadrata.

Taglio 1D: sezione critica rettilinea a distanza d dal pilastro

Punzonamento: sezione critica attorno al pilastro posta a distanza 2d

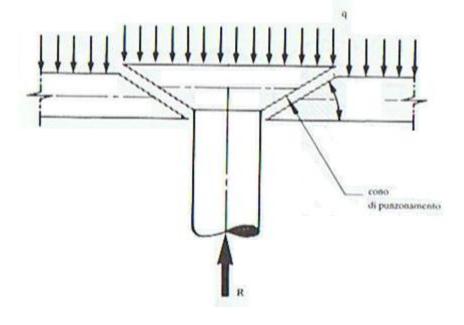


Si ha **Punzonamento** nelle piastre quando si è in presenza di un *carico concentrato* agente su un'area relativamente piccola che determina un comportamento bidirezionale, ad esempio:

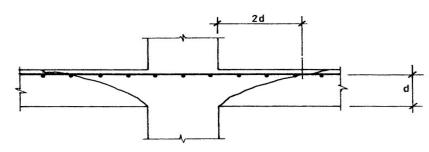
- Reazione del pilastro in solai a fungo
- Scarico del pilastro su platea di fondazione



Esempi di rottura per Punzonamento



La rottura si manifesta con il distacco di un tronco di cono di cls dalla piastra, tipicamente inclinata di un angolo θ =26.6°



Sollecitazione di Progetto:

Si distinguono due casi:

1) Carico centrato
$$(M_{Ed} = 0)$$

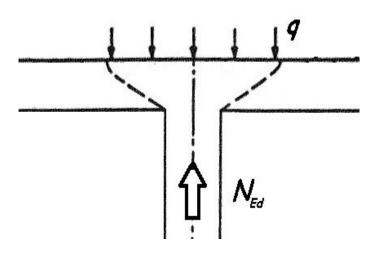
$$\tau_{Ed,1} = \frac{V_{Ed}}{u_1 \cdot d}$$

dove:

- V_{Ed} è il carico concentrato che agisce sulla piastra
- u_1 è il perimetro di verifica
- d è la media delle altezze utili

OSSERVAZIONE:

Nel caso di pilastri il carico concentrato coincide con lo sforzo normale N_{Ed} depurato della parte di carico distribuito che ricade dentro il perimetro u_1



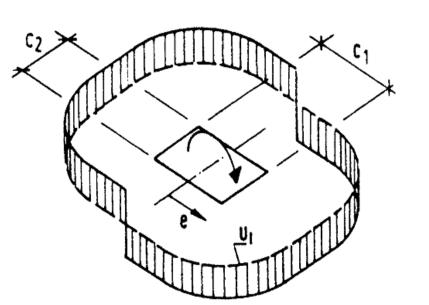
2) Carico eccentrico $(M_{Ed} \neq 0)$ $\tau_{Ed,1} = \frac{V_{Ed}}{u_1 \cdot d} + k \cdot \frac{M_{Ed}}{W_1 d}$ dove:

• M_{Ed} è il momento trasferito

• k è un fattore riduttivo (dipende dalle dimensioni del pilastro)

•
$$W_1 = \int_0^1 |e| dl$$
 con:
 dl tratto infinitesimo del perimetro u_1 ,

e distanza tra l'asse del momento e il tratto dl



OSSERVAZIONE:

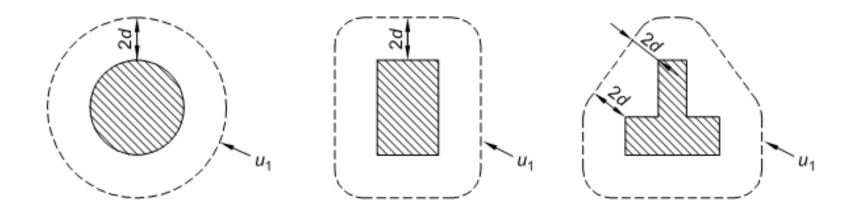
La norma pone nella forma:

$$\tau_{Ed,1} = \frac{V_{Ed}}{u_1 \cdot d} \cdot \left(1 + k \cdot \frac{M_{Ed}}{V_{Ed}} \cdot \frac{u_1}{W_1} \right)$$

Perimetro di verifica **u**,

è definito come quel perimetro che:

- sia a distanza 2d dal perimetro u_0 del pilastro
- abbia lunghezza minima

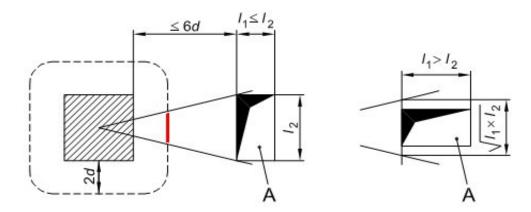


$$d = \frac{d_x + d_y}{2}$$
 Media tra le altezze utili relative alle armature disposte nelle due direzioni ortogonali

Casi particolari

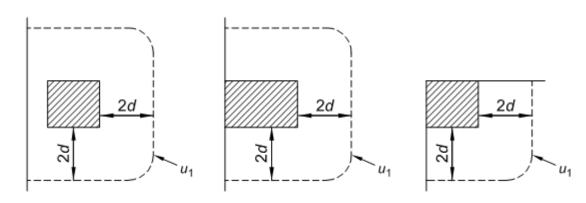
Scelta di u_1 se il perimetro di verifica è in prossimità di:

• un'apertura A



al perimetro si sottrae la parte compresa tra le due rette

- di bordi
- di angoli

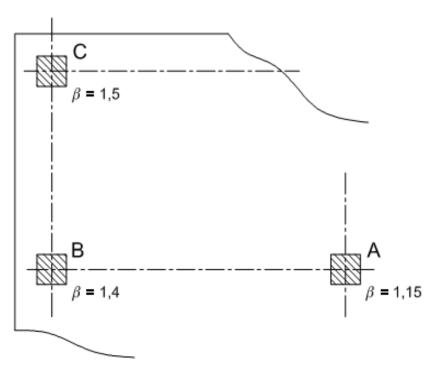


OSSERVAZIONE: il perimetro u_1 è SOLO quello tratteggiato

<u>Coefficiente β</u>

tiene conto di eventuali eccentricità di carico.

- Carico centrato: $\beta = 1$
- Carico eccentrico: $\beta > 1$



In via approssimata, si possono adottare per il coefficiente β i valori riportati in figura, se:

- le luci nelle due direzioni non differiscono più del 25%
- si esclude comportamento a telaio

In pilastri INTERNI, posto $e=M_{Ed}/V_{Ed}$, β si può determinare con maggior precisione come:

- Sezione CIRCOLARE di diametro D $\beta = 1 + 0.6\pi \frac{e}{D + 4d}$
- Sezione RETTANGOLARE di lati c_1 e c_2 $\beta = 1 + k \cdot e_1 \cdot u_1 / W_1$ (*e* solo in direzione 1)

$$\beta = 1 + 1.8 \cdot \sqrt{\left(\frac{e_1}{c_2 + 4d}\right)^2 + \left(\frac{e_2}{c_1 + 4d}\right)^2} \quad (e \text{ nelle due direzioni})$$

con:

$$W_1 = c_1^2 / 2 + c_1 c_2 + 4c_2 d + 16d^2 + 2\pi d c_1$$

c_1/c_2	≤0.5	1.0	2.0	≥3.0
k	0.45	0.60	0.70	0.80

In pilastri di BORDO

Notazione: $e_1 \perp al \, bordo$, $e_2 \parallel al \, bordo$

1) $e_2=0$, $e_1\neq 0$ è verso l'interno. Si assume:

$$\tau_{Ed,1} = \frac{V_{Ed}}{u_1^x \cdot d} \qquad (\beta = 1)$$

$$\beta = \frac{u_1}{u_1^x} + k^x \cdot e_2 \cdot \frac{u_1}{W_1^x}$$

$c_1/2c_2$	≤0.5	1.0	2.0	≥3.0
k ^x	0.45	0.60	0.70	0.80

$$W_1^x = c_2^2/4 + c_1c_2 + 4c_1d + 8d^2 + \pi d c_2$$

3) $e_2 \neq 0$, $e_1 \neq 0$ verso l'esterno. Si assume:

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array}$$

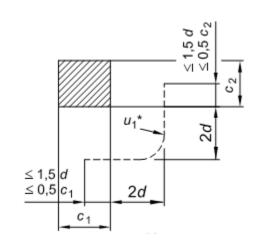
$$\beta = 1 + k \cdot e_2 \cdot u_1 / W_1$$

In pilastri d'ANGOLO

1) e verso l'interno. Si assume:

$$\tau_{Ed,1} = \beta \cdot \frac{V_{Ed}}{u_1^x \cdot d}$$

$$\beta = \frac{u_1}{u_1^x}$$



2) e verso l'esterno. Si assume:

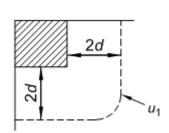
$$\beta = 1 + k \cdot e \cdot \frac{u_1}{W_1}$$

con al solito:

c_1/c_2	≤0.5	1.0	2.0	≥3.0
k	0.45	0.60	0.70	0.80

mentre W_1 si calcola come: $W_1 = \int |e| dl$

$$W_1 = \int_0^{u_1} |e| d$$



Resistenza di Progetto:

MC90 (Regan)
$$\tau_{Rd,c} = 0.12 \cdot \xi (100 \rho f_{ck})^{1/3}$$

EC2 (6.4.4) $\tau_{Rd,c} = 0.18/\gamma_c \cdot \xi (100 \rho f_{ck})^{1/3} \ge 0.035 \xi^{3/2} f_{ck}^{1/2}$

dove:

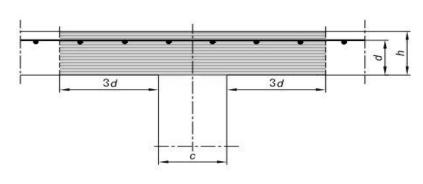
•
$$\xi = 1 + \sqrt{200/d} \le 2$$
 con d in mm

•
$$\rho = \sqrt{\rho_x \cdot \rho_y} \le 0.02$$
 $\rho_x, \rho_y \ge 0.5\%$

 ρ_x , ρ_y sono i rapporti geometrici di armatura tesa nelle due direzioni, calcolati considerando una larghezza L=3d+c+3d, dove c è la larghezza del pilastro

OSS:
$$0.12 = 0.18/\gamma_c(\gamma_c = 1.5)$$

le due espressioni coincidono!



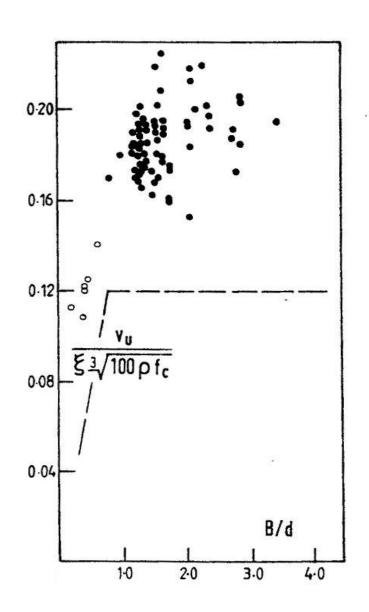
Si verifica che:

$$\tau_{Ed,1} \leq \tau_{Rd,c}$$

Tale verifica <u>non</u> risulta però sufficiente ad escludere il punzonamento se l'impronta di carico è molto piccola.

Risultati sperimentali mostrano infatti che per B<0.75d si perviene a rottura prima di arrivare a $\tau_{Rd,c}$

(con B si indica il diametro equivalente dell'impronta di carico)



Occorre quindi sempre accertare che:

$$\tau_{Ed,0} = \beta \frac{V_{Ed}}{u_0 d} \le \tau_{Rd,max} = 0.5 \nu f_{cd}$$

con
$$v = 0.5$$

OSS: u_{ρ} per pilastri di

Bordo
$$u_0 = c_2 + 3d \le c_2 + 2c_1$$

Angolo $u_0 = 3d \le c_2 + c_1$

Se
$$\tau_{Ed,0} \ge \tau_{Rd,max}$$

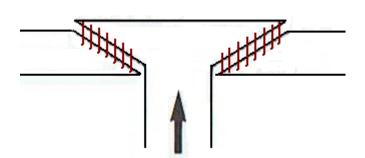
- Aumento l'impronta di carico (quindi u_0) con un ripartitore
- Aumento lo spessore della piastra (quindi *d*), magari anche solo localmente con un capitello

$$se \tau_{Ed,1} \ge \tau_{Rd,c}$$

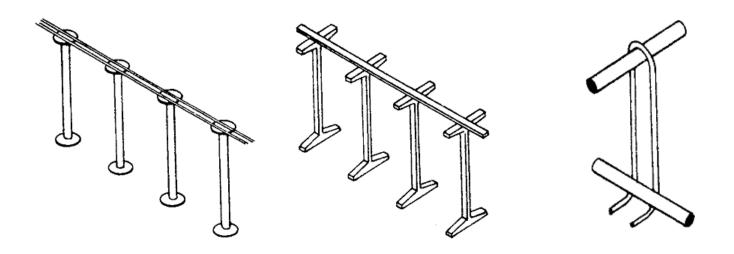
• Prescrivo un'armatura a punzonamento

Armatura a punzonamento:

lo scopo è quello di cucire il cono di rottura con la piastra



Esempi di armatura



Importante è assicurare un *adeguato ancoraggio* dell'armatura a punzonamento ad entrembi i lati della piastra.

Prima della quantità di armatura occorre definire l'<u>area</u> attorno al pilastro in cui questa è necessaria.

Considerando condizioni simili a quelle di un pilastro su una piastra senza armatura:

1) Si definisce il perimetro u_{out} o $u_{out,ef}$ per cui non è più necessario armare:

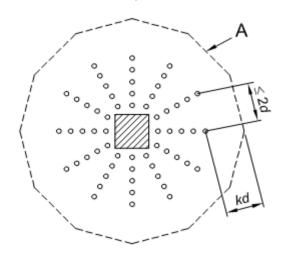
$$u_{out} = \beta V_{Ed} / (\tau_{Rd,c} d)$$

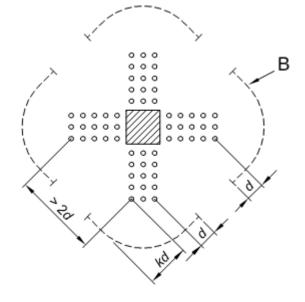
- 2) L'armatura va estesa fino a kd da u_{out} con:
 - k=1.5 secondo EC2
 - k=2.0 secondo MC90 (Regan)

Legenda

A Perimetro u_{out}

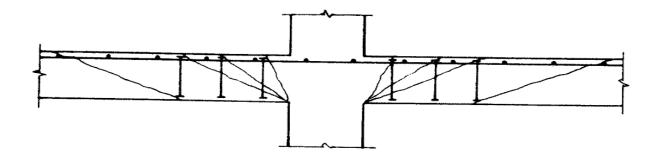
B Perimetro u_{out,ef}





Quantità di armatura a punzonamento all'interno dell'area

La resistenza di una piastra armata a punzonamento dipende dall'inclinazione θ della potenziale superficie di rottura, e ha sempre un contributo sia dal cls che dall'acciaio.



Poiché tale resistenza non varia troppo rapidamente con θ , si possono considerare solo due superfici:

1) parte dal pilastro e va all'armatura più vicina; la resistenza è la massima possibile e si verifica che:

$$\tau_{Ed,0} = \beta \frac{V_{Ed}}{u_0 d} \le \tau_{Rd,max} = 0.5 \nu f_{cd}$$

- 2) attraversa l'armatura a meno di 1.5d da filo pilastro: si valuta la resistenza finale sommando:
 - il 75% della resistenza del cls come se non fosse armato
 - il contributo dell'armatura a meno di 1.5d da filo pilastro

Se si ipotizza di disporre un'armatura costante A_{sw} su perimetri concentrici di forma simile al perimetro u_1 , si ha:

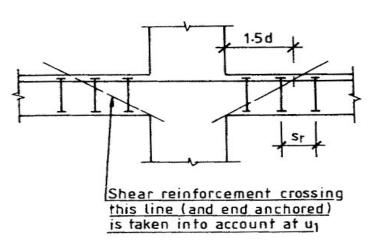
EC2 (6.4.5)
$$\tau_{Rd,cs} = 0.75 \tau_{Rd,c} + \frac{1.5d}{s_r} \frac{A_{sw} f_{ywd,ef}}{u_1 d} \sin \alpha$$
 dove:

$$f_{ywd,ef} = 250 + 0.25 d \le f_{ywd}$$

 A_{sw} è l'area su uno dei perimetri s, è il passo tra i perimetri

Si verifica che: $|\tau_{Ed,1} \leq \tau_{Rd,cs}|$

$$\tau_{Ed,1} \leq \tau_{Rd,cs}$$



Se l'armatura è disposta diversamente, è possibile considerare la somma delle resistenze degli elementi posti a meno di 1.5d da filo pilastro.

$$\frac{1.5d}{s_r} A_{sw} = \sum_{1.5d} A_s$$

OSS: Non conta come si dispone l'armatura.

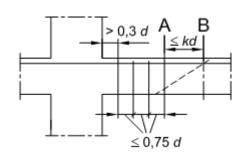
Le NTC 08 impongono inoltre di assicurare che l'intero sforzo di punzonamento allo SLU sia affidato alla sola armatura.

Cioè occorre verificare che:

$$f_{ywd,ef} \sum A_s \geqslant \beta \cdot V_{Ed}$$

Osservazioni:

- Le armature entro u_1 deve avere interasse $\leq 1.5d$
- Le armature tra u_1 e u_{out} interasse $\leq 2d$, altrimenti si considera $u_{out,ef}$
- I singoli bracci devono avere un passo ≤0.75*d* (in direzione radiale)
- Il braccio più interno va posto a distanza $0.3d \div 0.5d$ da filo pilastro, per permettere l'ancoraggio in zona compressa



• L'area minima di ogni braccio è data dall'espressione:

$$\frac{A_{sw,min} \cdot (1.5\sin\alpha + \cos\alpha)}{s_r s_t} \ge 0.08 \frac{\sqrt{f_{ck}}}{f_{yk}}$$

 s_r =passo radiale s_t =passo tangenziale α =inclinazione bracci