Summary Uncertainty

Basics of Probabmty « Definition « Reasoning requires simplifications:
* Joi ili - Birds fl
Theory Joint Probability irds fly |
« Conditional probability - Smoke suggests fire

» Treatment of exceptions
» How to reason from uncertain knowledge?

. . . * Random Variables
Fabrizio Riguzzi _ _
« Continuous Random Variables
*Acknowledgments: some slides from
» Andrew Moore's tutorials
http://lwww.autonlab.org/tutorials/
« Irina Rish and Moninder Singh's tutorial
http://lwww.research.ibm.com/people/r/rish/

How to Perform Inference? Probability Theory Frequentist Approach
» Use non-numerical techniques  A: Proposition, » A=The coin will land heads
- Logicist: non monotonic logic - Ex: A=The coin will land heads » 100 throws, for each throw we record whether A is
» Assign to each proposition a numerical measure of * P(A): probability of A tre
uncertainty » Frequentist approach: probability as relative * Results:
- Neo-probabilist: use probability theory frequency A -A
- Neo-calculist: use other theories: - Repeated random experiments (possible worlds) 61 4
+ fuzzy logic - P(A) is the fraction of experiments in which A ige o 4
« certainty factors . . - . _ol_ _ A=
« Dempster-Shafer « Bayesian approach: probability as a degree ofbelie P(A)=15=061=61% P(A)=15=048=49%

« Example: B=burglary tonight



Frequentist Approach Frequentist Approach Visualizing the Frequentist Approach

* H="having a headache” * F="having the flu” * P(A)
* 400 pa’[ients * 400 patients Experiments where A is true
Area of the green oval=P(A)
H _|H F ﬂFT All thy i
the experiments
40 36 10 3% oo |
=40 _01=100 =10_ )
P(A)—40c—0.1—10A) P(A)—4OC—0.025=2.5A)
Axioms of Probability Theory Visualizing the Axioms Visualizing the Axioms
» 0<=P(A)<=1: the area cannot get smaller than 0 and * P(A v B)=P(A)+P(B) if they are mutually exclusive
0<P(A)<1 larger than 1 * Mutually exclusive=> no world in common=> non

overlapping=> the area is the sum

P (Sure Propositiop=1
All the experiments All the experiments

(worlds) (worlds) -
P(AVB)=P(A)+P(B) Areast it Areact it .

if AandBare mutually exclusive
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Joint Probability

« Consider the events

* Joint event: HOF="having a headache and the flu”

- H="having a headache”
- F="having the flu”

* Also written as H,F
* Joint probability: P(HOF)=P(H,F)
» Frequentist interpretation:

- P(HOF)=P(H,F) is the fraction of experiments (in this

case patients) where both H and F holds

Conditional Probabilities

P(A|B)= belief of A given that | know B
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Definition according to the frequentist approach:

P(A,B)

P(AB)="5 75

Interpretation: fraction of the worlds where Briset

in which also A is true
If P(B)=0 than p(A|B) is not defined
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Joint Probability

« Example: 400 patients

H[ -H
F 5 5 1
-~F 35 355 390
40 360 400

-5 _ SE)=35 o
P(H ,F)—M—O.OH&LZS% P(H, F)_4O( =0.08758.75%
P(-H F):i:O 0125-1.25%  P(=H ,ﬂF):g’:O.8875:88.75%
00 ' 40C
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Example

» H="having a headache”, F="having the flu”

* P(H|F)="having a headache given that | have the
flu”

H| -H 5
F 5 5 1( p(H|F):PLTF"):):%:%:O,5:50%
-F 35355 390 0%

40 360 400

* P(H|F)=0.5: H and F are rare but if | have thefiflu,
is probable that | have a headache
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Probability Rules

* Any event A can be written as the or of two disfoin
events (AB) and (AO-B)

P(A):P(A,BHP(A,ﬁB) marginalization/

sumrule
« In general, if Bi=1,2,...,n is a set of exhaustive and
mutually exclusive propositions

P(A)=2 P(A,B)
» Moreover, picking A=true:
P(B)+P(-B)=1

Example

il

FANDH
|

L



Product Rule

e From
P(A,B)

P(AB)="5 5

* We can derive
P(A,B)=P(AB)P(B) productrule
* In the Bayesian approach, the conditional

probability is fundamental and the joint probalilit
is derived with the product rule.
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Chain Rule

- nevents E....E
« Joint event (E...,E)

P(E,.-.., E)=P(E|E, 1. .E))P(Ey,...,E)
P(En-1s--, E1)J=P(E i|Eq s . E)P(En ;.. Ey)
* Chain rule:
P(E,,..., El):P(En|En—1---vEl)---P(E2|E1)P(E1):
[1_,P(EIE ....E) -

Bayes Theorem

 Relationship between P(A|B) and P(B|A):
P(A,B)=P(A|B)P(B), P(A,B)=P(B|A)P(A) =>

P(BIA)P(A)

P(AB)=——75;

* P(A): prior probability
» P(A|B): posterior probability (after learning B)

Multivalued Hypothesis

 Propositions can be seen as binary variables, i.e.

variables taking values true or false
- Burglary B: true or false
» Generalization: multivalued variables
- Semaphore S, values: green, yellow, red
- Propositions are a special case with two values

Example

H="having a headache”
F="having the flu”
P(H)=0.1 P(F)=0.025
P(H|F)=0.5

P(F|H)= P(HFL'(::;(F)=O'5291'025=0.125

Knowing that | have a headache, the probability of
having the flu raises to 1/8

21

Discrete Random Variables

Variable V, values M=1,...,n

V is also called aiscreterandom variable

V=v, is a proposition

Propositions V=vi=1,...,n exhaustive and mutually
exclusive

P(v) stands for P(V=y

V is described by the set {PYj=1,...,n}, the
probability distribution of V, indicated with P(V)
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Notation

» We indicate with v a generic value of V
» Set or vector of variableg, valuesv
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Conditional Probabilities

* P(a]b)= belief of A=a given that | know B=b
 Relation to P(a,b)

P(a,b)=P(alb)P(b) productrule

P(alb):—Pée(‘k')?)
» Bayes theorem
P(bla) p(a)
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Marginalization

Multivalued variables A and B
b, i=1,...,n values of B
P(a)=2 P(a,b)
Or
P(a)=2., P(a,b)

In general

P(X):Z P(x,y) sumruleor
Y marginalization

Continuous Random Variables

A multivalued variable V that takes values from a
real interval [a,b] is called @ntinuous random
variable

P(V=v)=0, we want to compute R{¢<d)

V is described by probability density function
p: [a,b}-[0,1]
p(v) is such that

Plc=v=d)=[" p(v)dv

Conjunctions

« A conjunction of two Boolean variables can be
considered as a single random variable that takes 4
values

« Example:
- H and F, values {true, false}

- (H,F), values {(true,true),(true,false),(false,ue
(false,false)}
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Properties of Continuous Random Variables

» The same as those of discrete random variables
where summation is replaced by integration:

» Marginalization (sum rule)
p(x)=[ p(x,y)dy
+ Conditional probability (product rule)
p(x,y)=p(x]y)p(y)
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Mixed Distribution

» We can have a conjunction of discrete and
continuous variables

« Joint: if one of the variables is continuous, thi@f
is a density:
- X discrete, Y continuougi(x,y)
« Conditional joint:
- X discrete, Y continuous: P(x|y)
- X discrete, Y continuous, Z discretgXx,y|z)
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