
Physical Database Design 

in SQL Server 



2 

Physical Structures 

• Primary structures 

– Heap 

– Ordered with sparse B+-tree 

• Secondary indexes: dense B+-tree 



3 

CREATE TABLE 

CREATE TABLE     [database_name . [schema_name] . 

| schema_name.] table_name 

    ( { <column_definition> | 

<computed_column_definition> } 

        [ <table_constraint> ] [ ,...n ] ) 

    [ ON { partition_scheme_name 
(partition_column_name ) | filegroup | "default" } ] 

     [ { TEXTIMAGE_ON { filegroup | "default" } ]  



4 

CREATE TABLE 

• Creates table table_name 

• [ON { partition_scheme_name 

(partition_column_name ) | filegroup | "default" } ] 

– Specifies the partition scheme or filegroup on 

which the table is stored. 

– If "default" is specified, or if ON is not specified at 

all, the table is stored on the default filegroup.  

– The storage mechanism of a table as specified in 

CREATE TABLE cannot be subsequently altered. 



5 

TEXTIMAGE_ON 

•  [ { TEXTIMAGE_ON { filegroup | "default" } ]  

– indicate that the text, ntext, image, xml, varchar(max), 

nvarchar(max), varbinary(max), and CLR user-defined 

type columns are stored on the specified filegroup.  

– TEXTIMAGE_ON is not allowed if there are no large value 

columns in the table.  

– TEXTIMAGE_ON cannot be specified if <partition_scheme> 

is specified.  

– If "default" is specified, or if TEXTIMAGE_ON is not 

specified at all, the large value columns are stored in the 

default filegroup. The storage of any large value column data 

specified in CREATE TABLE cannot be subsequently 

altered.  

 



6 

<column_definition> 

<column_definition> ::=column_name <data_type> 

    [ COLLATE collation_name ] 

    [ NULL | NOT NULL ] 

    [ 

        [ CONSTRAINT constraint_name ] DEFAULT  

     constant_expression  

         | IDENTITY [ ( seed ,increment ) ]  

     ] 

     [ ROWGUIDCOL ] 

     [ <column_constraint> [ ...n ] ]  



7 

<column_definition> 

• NULL | NOT NULL  

– Determine whether null values are allowed in the 

column.  



8 

IDENTITY 

• When a new row is added to the table, the Database Engine 

provides a unique, incremental value for the column.  

• Identity columns are typically used with PRIMARY KEY 

constraints to serve as the unique row identifier for the table.  

• The IDENTITY property can be assigned to tinyint, smallint, 

int, bigint, decimal(p,0), or numeric(p,0) columns.  

• Only one identity column can be created per table.  

• DEFAULT constraints cannot be used with an identity column.  

• Both the seed and increment or neither must be specified. If 

neither is specified, the default is (1,1). 



9 

ROWGUIDCOL 

• Although the IDENTITY property automates row 

numbering within one table, separate tables, each 

with its own identifier column, can generate the same 

values.  

• If an application must generate an identifier column 

that is unique across the database, or every 

database on every networked computer in the world, 

use the ROWGUIDCOL property, the 

uniqueidentifier data type, and the NEWID function. 



10 

ROWGUIDCOL 

• When you use the ROWGUIDCOL property to define a Globally 

Unique Identifier (GUID) column, consider the following:  

– A table can have only one ROWGUIDCOL column, and that 

column must be defined by using the uniqueidentifier data 

type. 

– The Database Engine does not automatically generate 

values for the column. To insert a globally unique value, 

create a DEFAULT definition on the column that uses the 

NEWID function to generate a globally unique value. 

– Because the ROWGUIDCOL property does not enforce 

uniqueness, the UNIQUE constraint should be used to 

guarantee that unique values are inserted into the 

ROWGUIDCOL column. 



11 

<column_constraint> 

<column_constraint> ::= 

[ CONSTRAINT constraint_name ]  

 {     { PRIMARY KEY | UNIQUE }          

  [ CLUSTERED | NONCLUSTERED ] 

  [ ON { partition_scheme_name ( partition_column_name )             
 | filegroup | "default" } ] 

  |   [ FOREIGN KEY ] 

         REFERENCES [ schema_name . ] referenced_table_name  

  [ ( ref_column ) ] 

         [ ON DELETE { NO ACTION | CASCADE | SET NULL | SET 
 DEFAULT } ] 

         [ ON UPDATE { NO ACTION | CASCADE | SET NULL | SET 
 DEFAULT } ] 

| CHECK ( logical_expression ) }  



12 

<column_constraint> 

• PRIMARY KEY  

– Is a constraint that enforces entity integrity for a specified 

column or columns through a unique index. Only one 

PRIMARY KEY constraint can be created per table. 

• UNIQUE  

– Is a constraint that provides entity integrity for a specified 

column or columns through a unique index. A table can have 

multiple UNIQUE constraints. 

• CLUSTERED | NONCLUSTERED  

– Indicate that a clustered or a nonclustered index is created 

for the PRIMARY KEY or UNIQUE constraint. PRIMARY 

KEY constraints default to CLUSTERED, and UNIQUE 

constraints default to NONCLUSTERED. 

 



13 

<column_constraint> 

– In a CREATE TABLE statement, CLUSTERED can be 

specified for only one constraint. If CLUSTERED is specified 

for a UNIQUE constraint and a PRIMARY KEY constraint is 

also specified, the PRIMARY KEY defaults to 

NONCLUSTERED.  

– The clause ON indicates where the index will be stored 

• CHECK  

– Is a constraint that enforces domain integrity by limiting the 

possible values that can be entered into a column or 

columns.  

• logical_expression  

– Is a logical expression that returns TRUE or FALSE.  



14 

Examples of <column_definition> 

EmployeeID int 

PRIMARY KEY CLUSTERED 

 

SalesPersonID int NULL 

REFERENCES SalesPerson(SalesPersonID) 

 

Name nvarchar(100) NOT NULL 

UNIQUE NONCLUSTERED 



15 

Computed Columns 

• A computed column is computed from an expression 

that uses other columns in the same table.  

• It is not physically stored in the table, unless the 

column is marked PERSISTED.  

• For example, a computed column can have the 

definition: cost AS price * qty. The expression can 

be a noncomputed column name, constant, function, 

variable, and any combination of these connected by 

one or more operators. The expression cannot be a 

subquery. 



16 

Computed Columns 

• Computed columns can be used in select lists, WHERE clauses, 
ORDER BY clauses, or any other locations in which regular 
expressions can be used, with the following exceptions:  

– A computed column can be used as a key column in an 
index or as part of any PRIMARY KEY or UNIQUE 
constraint, if the computed column value is defined by a 
deterministic expression and the data type of the result is 
allowed in index columns. 

• For example, if the table has integer columns a and b, 
the computed column a+b may be indexed, but the 
computed column a+DATEPART(dd, GETDATE()) 
cannot be indexed because the value may change in 
subsequent invocations.  

– A computed column cannot be the target of an INSERT or 
UPDATE statement.  
 

 



17 

<computed_column_definition> 

<computed_column_definition> ::=column_name AS 
computed_column_expression  

[ PERSISTED [ NOT NULL ] ] 

[ [ CONSTRAINT constraint_name ]  

      { PRIMARY KEY | UNIQUE }          

  [ CLUSTERED | NONCLUSTERED ] 

          [   WITH FILLFACTOR = fillfactor 

               | WITH ( < index_option > [ , ...n ] ) ] 

     |  [ FOREIGN KEY ] 

         REFERENCES [ schema_name . ] referenced_table_name  

  [ ( ref_column ) ] 

         [ ON DELETE { NO ACTION | CASCADE } ] 

         [ ON UPDATE { NO ACTION } ] 

| CHECK ( logical_expression ) }  

   [ ON { partition_scheme_name ( partition_column_name ) | filegroup | 
"default" } ] 

]  



18 

PERSISTED 

• Specifies that the SQL Server Database Engine will 

physically store the computed values in the table, and 

update the values when any other columns on which 

the computed column depends are updated. 

• Any computed column that is used as a partitioning 

column of a partitioned table must be explicitly 

marked PERSISTED.  

• computed_column_expression must be deterministic 

when PERSISTED is specified 

 



19 

<table_constraint> 

< table_constraint > ::= 

[ CONSTRAINT constraint_name ]  

{     { PRIMARY KEY | UNIQUE } 

       [ CLUSTERED | NONCLUSTERED ] 

       (column [ ASC | DESC ] [ ,...n ] ) 

       [ ON { partition_scheme_name (partition_column_name) | filegroup | 
 "default" } ] 

     | FOREIGN KEY  ( column [ ,...n ] ) 

     REFERENCES referenced_table_name [ ( ref_column [ ,...n ] ) ] 

     [ ON DELETE { NO ACTION | CASCADE | SET NULL |  

  SET DEFAULT}] 

     [ ON UPDATE { NO ACTION | CASCADE | SET NULL |  

  SET DEFAULT } ] 

 | CHECK ( logical_expression ) }  



20 

<table_constraint> 

• Used for defining multicolumn constraints 

• column: is a column or list of columns, in 

parentheses, used to indicate the columns used in 

the constraint definition. 

• [ ASC | DESC ]:  specifies the order in which the 

column or columns participating in table constraints 

are sorted. The default is ASC. 



21 

Example of <table_constraint> 

FOREIGN KEY (SalesPersonID) REFERENCES 

SalesPerson(SalesPersonID) 

 

CONSTRAINT 

FK_SpecialOfferProduct_SalesOrderDetail 

FOREIGN KEY (ProductID, SpecialOfferID) 

REFERENCES SpecialOfferProduct (ProductID, 

SpecialOfferID) 



22 

Complete Example 

CREATE TABLE [dbo].[PurchaseOrderDetail] 

(    [PurchaseOrderID] [int] NOT NULL 

        REFERENCES 
Purchasing.PurchaseOrderHeader(PurchaseOrderID), 

    [LineNumber] [smallint] NOT NULL, 

    [ProductID] [int] NULL  

        REFERENCES Production.Product(ProductID), 

    [DueDate] [datetime] NULL, 

    [rowguid] [uniqueidentifier] ROWGUIDCOL  NOT NULL 

        CONSTRAINT [DF_PurchaseOrderDetail_rowguid] DEFAULT 
(newid()), 

    [ModifiedDate] [datetime] NOT NULL  

        CONSTRAINT [DF_PurchaseOrderDetail_ModifiedDate] DEFAULT 
(getdate()), 

    [UnitPrice] [money] NULL, [OrderQty] [smallint] NULL, 

    [LineTotal]  AS (([UnitPrice]*[OrderQty])), 

CONSTRAINT [PK_PurchaseOrderDetail_PurchaseOrderID_LineNumber] 

    PRIMARY KEY CLUSTERED ([PurchaseOrderID], [LineNumber]) 

) ON [PRIMARY] 



23 

Partitions 

• A large table or index can be divided into partitions 

• A partition is an horizontal portion of a table or index 

• A column is chosen on the basis of which performing 

partitioning 

• The partitions can be spread across more than one 

filegroup in a database.  

• The table or index is treated as a single logical entity 

when queries or updates are performed on the data. 

• All partitions of a single index or table must reside in 

the same database.  



24 

Partitions 

• Example: A transaction table 

• The current month of data is primarily used for INSERT, 

UPDATE, and DELETE operations  

• Previous months are used primarily for SELECT queries 

• Partitioning by month can be useful for 

– Maintenance operations: index rebuilds  

– Moving one month of read-only data from this table to a data 

warehouse table for analysis. With partitioning, subsets of 

data can be separated quickly from a table and then added 

as partitions to another existing partitioned table, assuming 

these tables are all in the same database instance.  

– Improving query performance 

 



25 

Partitioning 

• In SQL Server, all tables and indexes in a database 

are considered partitioned, even if they are made up 

of only one partition.  

• Essentially, partitions form the basic unit of 

organization in the physical architecture of tables and 

indexes.  



26 

Partitioned Indexes 

• Partitioned indexes can be implemented 

independently from their base tables 

• However, it generally makes sense to partition the 

index in the same way as the underlying table.  We 

say the index is aligned with the table 

• When you design a partitioned table and then create 

an index on the table, SQL Server automatically 

partitions the index by using the same partition 

scheme and partitioning column as the table.  

  



27 

Partitioning 

• Before partitioning a table or index you need to 

create the following database objects:  

– Partition function: determines the values of the 

thresholds on the partitioning column  

– Partition scheme: determines in which filegroup 

each partition is stored 

 



28 

Example 

CREATE PARTITION FUNCTION myRangePF1 (int) 

AS RANGE LEFT FOR VALUES (1, 100, 1000); 

GO 

CREATE PARTITION SCHEME myRangePS1 

AS PARTITION myRangePF1 

TO (test1fg, test2fg, test3fg, test4fg); 

The partitions of a table that uses partition function myRangePF1 on 

partitioning column col1 would be assigned as shown in the following 

table  

Partition  1 2 3 4 

Values  col1 <= 1 
col1 > 1 AND 

col1 <= 100 

col1>100 AND 

col1 <= 1000 
col1 > 1000  

Filegroup  test1fg test2fg test3fg test4fg 



29 

Example 

CREATE TABLE PartitionTable (col1 int, col2 char(10)) 

ON myRangePS1 (col1) ; 

GO 



30 

Views 

• A view can be thought of as either a virtual table or a 

stored query.  

• Unless a view is indexed, its data is not stored in the 

database as a distinct object. What is stored in the 

database is a SELECT statement. The result set of 

the SELECT statement forms the virtual table 

returned by the view.  

• A user can use this virtual table by referencing the 

view name in Transact-SQL statements in the same 

way in which a table is referenced.  



31 

Types of Views 

• Standard views 

• Indexed Views:  

– it is a view that has been materialized. This means 

it has been computed and stored. You index a 

view by creating a unique clustered index on it.  

– Indexed views dramatically improve the 

performance of some types of queries. Indexed 

views work best for queries that aggregate many 

rows. They are not well-suited for underlying data 

sets that are frequently updated. 



32 

CREATE VIEW 

CREATE VIEW [ schema_name . ] view_name [ 

(column [ ,...n ] ) ] 

 [ WITH <view_attribute> [ ,...n ] ]  

AS select_statement [ ; ] 

[ WITH CHECK OPTION ]  

 

<view_attribute> ::= { 

 [ SCHEMABINDING ] 

 …}  



33 

column 

• column  

– If column is not specified, the view columns 

acquire the same names as the columns in the 

SELECT statement.  

– If it is specified, it is the name to be used for a 

column in a view. A column name is required only 

when a column is derived from an arithmetic 

expression, a function, or a constant; when two or 

more columns may otherwise have the same 

name, typically because of a join; or when a 

column in a view is given a name different from 

that of the column from which it is derived.  



34 

WITH CHECK OPTION 

• Forces all data modification statements executed 

against the view to satisfy the criteria set within 

select_statement. When a row is modified through a 

view, the WITH CHECK OPTION makes sure the 

data remains visible through the view after the 

modification is committed. 

 



35 

SCHEMABINDING 

• When SCHEMABINDING is specified, the base table 

or tables cannot be modified in a way that would 

affect the view definition.  

• The view definition itself must first be modified or 

dropped to remove dependencies on the table that is 

to be modified, otherwise an error is returned 

 



36 

Updatable Views 

• You can modify the data of an underlying base table through a 

view, as long as the following conditions are true:  

– Any modifications, including UPDATE, INSERT, and 

DELETE statements, must reference columns from only one 

base table.  

– The columns being modified in the view must directly 

reference the underlying data in the table columns. The 

columns cannot be derived in any other way, such as 

through the following:  

• An aggregate function: AVG, COUNT, SUM, MIN, MAX, 

GROUPING 

• A computation. The column cannot be computed from an 

expression that uses other columns.  



37 

Updatable Views 

– The columns being modified are not affected by 

GROUP BY, HAVING, or DISTINCT clauses. 

– TOP is not used anywhere in the select_statement 

of the view together with the WITH CHECK 

OPTION clause. 

 

 



38 

View Example 

USE AdventureWorks ; 

GO 

CREATE VIEW hiredate_view 

AS  

SELECT c.FirstName, c.LastName, e.EmployeeID, 
e.HireDate 

FROM HumanResources.Employee e JOIN 
Person.Contact c on e.ContactID = c.ContactID ; 

GO 

 

An UPDATE that modifies an employee LastName and 
HireDate returns an error 



39 

View Example 

USE AdventureWorks ; 

GO 

CREATE VIEW SeattleOnly 

AS 

SELECT p.LastName, p.FirstName, p.City,  

FROM Person p WHERE p.City = 'Seattle' 

WITH CHECK OPTION ; 

GO 

 

An UPDATE that changes the city of a Person returns 
an error. 

 



40 

Index Types 

Index type  Description  

Clustered 
A clustered index sorts and stores the data rows of the 

table or view in order based on the clustered index key.  

Nonclustered 

A nonclustered index can be defined on a table or view 

with a clustered index or on a heap. Each index row in 

the nonclustered index contains the nonclustered key 

value and a row locator.  

Unique 

A unique index ensures that the index key contains no 

duplicate values and therefore every row in the table or 

view is in some way unique. 

Both clustered and nonclustered indexes can be unique. 



41 

Index Types 

Index with 

included 

columns 

A nonclustered index that is extended to include nonkey 

columns in addition to the key columns. 

Indexed views 

An index on a view materializes the view and the result set is 

permanently stored in a unique clustered index in the same 

way a table with a clustered index is stored. Nonclustered 

indexes on the view can be added after the clustered index is 

created. 

Full-text  

A special type of token-based functional index that is built and 

maintained by the Microsoft Full-Text Engine for SQL Server 

(MSFTESQL) service. It provides efficient support for 

sophisticated word searches in character string data.  

XML 
A persisted, representation of the XML binary large objects 

(BLOBs) in the xml data type column. 



42 

Index Creation 

• Indexes are automatically created when PRIMARY KEY and 

UNIQUE constraints are defined on table columns.  

• A unique index is created to enforce the uniqueness 

requirements of a PRIMARY KEY or UNIQUE constraint.  

• By default, a unique clustered index is created to enforce a 

PRIMARY KEY constraint, unless a clustered index already 

exists on the table, or you specify a nonclustered index.  

• By default, a unique nonclustered index is created to enforce a 

UNIQUE constraint unless a unique clustered index is explicitly 

specified and a clustered index on the table does not exist.  

• An index created as part of a PRIMARY KEY or UNIQUE 

constraint is automatically given the same name as the 

constraint name.  



43 

Index Creation 

• An index can be built with 

– CREATE INDEX of T-SQL or 

– New Index of Management Studio 



44 

Relational Index Creation 

CREATE [ UNIQUE ] [ CLUSTERED | 

NONCLUSTERED ] INDEX index_name  

    ON <object> ( column [ ASC | DESC ] [ ,...n ] ) 

     [ INCLUDE ( column_name [ ,...n ] ) ] 

    [ WITH ( <relational_index_option> [ ,...n ] ) ] 

    [ ON { partition_scheme_name ( column_name ) 

          | filegroup_name  

          | “default” } 

    ] 

<object> ::= table_or_view  



45 

Unique Indexes 

• The benefits of unique indexes include the following:  

– Data integrity of the defined columns is ensured. 

– Additional information helpful to the query 
optimizer is provided 

• There are no significant differences between creating 
a UNIQUE constraint and creating a unique index 
independently of a constraint. Data validation occurs 
in the same manner and the query optimizer does not 
differentiate between a unique index created by a 
constraint or manually created.  

• Create a UNIQUE or PRIMARY KEY constraint on 
the column when data integrity is the objective.  



46 

Unique Indexes 

• For indexing purposes, NULL values compare as 

equal. Therefore, you cannot create a unique index, 

or UNIQUE constraint, if the key values are NULL in 

more than one row. Select columns that are defined 

as NOT NULL when you choose columns for a 

unique index or unique constraint. 



47 

Sort Order 

• You should consider whether the data for the index 
key column should be stored in ascending or 
descending order.  

• Ascending is the default  Keywords: ASC (ascending) 
and DESC (descending)  

• Specifying the order in which key values are stored in 
an index is useful when queries referencing the table 
have ORDER BY clauses that specify order 
directions for the columns in that index.  

• In these cases, the index can remove the need for a 
SORT operator in the query plan; therefore, this 
makes the query more efficient. 



48 

Sort Order Example 

• The buyers in the Adventure Works Cycles 

purchasing department have to evaluate the quality 

of products they purchase from vendors. The buyers 

are most interested in finding products sent by these 

vendors with a high rejection rate.  

• Retrieving the data to meet this criteria requires the 

RejectedQty column in the 

Purchasing.PurchaseOrderDetail table to be sorted in 

descending order (large to small) and the ProductID 

column to be sorted in ascending order (small to 

large). 

 



49 

Sort Order Example 

USE AdventureWorks; 

GO 

SELECT RejectedQty, ((RejectedQty/OrderQty)*100) 

AS RejectionRate, ProductID, DueDate 

FROM Purchasing.PurchaseOrderDetail 

ORDER BY RejectedQty DESC, ProductID ASC; 



50 

Sort Order Example 

• The following execution plan for this query shows that 

the query optimizer used a SORT operator to return 

the result set in the order specified by the ORDER 

BY clause. 



51 

Sort Order Example 

• If an index is created with key columns that match 

those in the ORDER BY clause in the query, the 

SORT operator can be eliminated in the query plan 

and the query plan is more efficient: 

 

CREATE NONCLUSTERED INDEX 

IX_PurchaseOrderDetail_RejectedQty 

ON Purchasing.PurchaseOrderDetail 

    (RejectedQty DESC, ProductID ASC); 



52 

Sort Order Example 

• After the query is executed again, the following 

execution plan shows that the SORT operator has 

been eliminated and the newly created nonclustered 

index is used.  



53 

Sort Order 

• SQL Server can move equally efficiently in either 

direction. An index defined as (RejectedQty DESC, 

ProductID ASC) can still be used for a query in which 

the sort direction of the columns in the ORDER BY 

clause are reversed. 

• For example, a query with the ORDER BY clause 

ORDER BY RejectedQty ASC, ProductID DESC can 

use the index.  

• A query with the ORDER BY clause ORDER BY 

RejectedQty ASC, ProductID ASC can not use the 

index.  

 



54 

Index Position 

• ON filegroup_name  

– Creates the specified index on the specified 
filegroup. If no location is specified and the table 
or view is not partitioned, the index uses the same 
filegroup as the underlying table or view. The 
filegroup must already exist.  

• ON "default"  

– Creates the specified index on the default 
filegroup.  

– The term default, in this context, is not a keyword. 
It is an identifier for the default filegroup and must 
be delimited, as in ON "default" or ON [default].  



55 

CREATE INDEX Example 

• The following example creates a nonclustered index 

on the VendorID column of the 

Purchasing.ProductVendor table. 

 

USE AdventureWorks; 

GO 

CREATE INDEX IX_ProductVendor_VendorID  

    ON Purchasing.ProductVendor (VendorID);  

GO 



56 

CREATE INDEX Example 

• The following example creates a nonclustered 

composite index on the SalesQuota and SalesYTD 

columns of the Sales.SalesPerson table. 

 

USE AdventureWorks 

GO 

CREATE NONCLUSTERED INDEX 

IX_SalesPerson_SalesQuota_SalesYTD 

    ON Sales.SalesPerson (SalesQuota, SalesYTD); 

GO 



57 

CREATE INDEX Example 

• The following example creates a unique nonclustered 

index on the Name column of the 

Production.UnitMeasure table.  

 

USE AdventureWorks; 

GO 

CREATE UNIQUE INDEX AK_UnitMeasure_Name  

    ON Production.UnitMeasure(Name); 

GO 

• AK stands for Alternate Key 



58 

CREATE INDEX Example 

Attempting to insert a row with the same value as that in 

an existing row.  

INSERT INTO Production.UnitMeasure 

(UnitMeasureCode, Name, ModifiedDate) VALUES 

('OC', 'Ounces', GetDate());  

GO 

Result: 

Server: Msg 2601, Level 14, State 1, Line 1 

Cannot insert duplicate key row in object 'UnitMeasure' 

with unique index 'AK_UnitMeasure_Name'. The 

statement has been terminated. 



59 

Indexes on Views 

• The first index created on a view must be a unique 

clustered index. After the unique clustered index has 

been created, you can create additional nonclustered 

indexes.  

• The naming conventions for indexes on views are the 

same as for indexes on tables. The only difference is 

that the table name is replaced with a view name.  

• The view must be defined with SCHEMABINDING to 

create an index on it  

• An indexed view is stored in the database in the 

same way a table with a clustered index is stored.  



60 

Index Creation 

• Whether the index will be created on an empty table 

or one that contains data is an important factor to 

consider.  

• Creating an index on an empty table has no 

performance implications at the time the index is 

created; however, performance will be affected when 

data is added to the table.  

• Creating indexes on large tables should be planned 

carefully so database performance is not hindered. 

The preferred way to create indexes on large tables 

is to start with the clustered index and then build any 

nonclustered indexes.  



61 

Index Creation 

• If a clustered index is created on a heap with several 

existing nonclustered indexes, all the nonclustered 

indexes must be rebuilt so that they contain the 

clustering key value instead of the row identifier 

(RID). Similarly, if a clustered index is dropped on a 

table that has several nonclustered indexes, the 

nonclustered indexes are all rebuilt as part of the 

DROP operation. This may take significant time on 

large tables. 

  

 



62 

Index Creation 

• In SQL Server you can create, rebuild, or drop indexes online 

with the ONLINE option set to ON. 

• It allows concurrent user access to the underlying table or 

clustered index data and any associated nonclustered indexes 

during index operations.  

• For example, while a clustered index is being rebuilt by one 

user, that user and others can continue to update and query the 

underlying data.  

• When you perform DDL operations offline, such as building or 

rebuilding a clustered index; these operations hold long-term 

exclusive locks on the underlying data and associated indexes. 

This prevents modifications and queries to the underlying data 

until the index operation is complete. 



63 

Fragmentation 

• Over time insert, update, or delete operations can 
cause the information in the index to become 
scattered in the database (fragmented).  

• Fragmentation exists when indexes have pages in 
which the logical ordering, based on the key value, 
does not match the physical ordering inside the data 
file.  

• Heavily fragmented indexes can degrade query 
performance and cause your application to respond 
slowly.  

• You can remedy index fragmentation by either 
reorganizing an index or by rebuilding an index. 



64 

Detecting Fragmentation 

• By using the system function 
sys.dm_db_index_physical_stats, you can detect 
fragmentation in a specific index, all indexes on a 
table or indexed view, all indexes in a database, or all 
indexes in all databases.  

• For partitioned indexes, 
sys.dm_db_index_physical_stats also provides 
fragmentation information for each partition. 

• The result set returned by this function includes the 
following column: 

– avg_fragmentation_in_percent: the percent of 
logical fragmentation (out-of-order pages in the 
index). 



65 

Correcting Fragmentation 

• After the degree of fragmentation is known, use the 

following table to determine the best method to 

correct the fragmentation: 

avg_fragmentation_in_percent 

value  
Corrective statement  

> 5% and < = 30%  ALTER INDEX REORGANIZE 

> 30% ALTER INDEX REBUILD 



66 

Example 

• Rebuilding online all indexes on table 

Production.Product 

 

USE AdventureWorks; 

GO 

ALTER INDEX ALL ON Production.Product 

REBUILD WITH (ONLINE = ON); 



67 

Dropping Indexes 

• When a clustered index is dropped, the data rows 

that were stored in the leaf level of the clustered 

index are stored in an unordered table (heap). 

• Dropping a clustered index can take time because all 

nonclustered indexes on the table must be rebuilt to 

replace the clustered index keys with row pointers to 

the heap.  

• When dropping all indexes on a table, drop the 

nonclustered indexes first and the clustered index 

last.  



68 

Dropping Indexes Example 

The following example drops the index 

IX_ProductVendor_VendorID in the ProductVendor 

table.  

 

USE AdventureWorks; 

GO 

DROP INDEX IX_ProductVendor_VendorID  

    ON Purchasing.ProductVendor; 

GO 



69 

Dropping Indexes Example 

• The following example drops a clustered index with 

the ONLINE option set to ON. The resulting 

unordered table (heap) is stored in the same 

filegroup as the index was stored.  

USE AdventureWorks; 

GO 

DROP INDEX 

AK_BillOfMaterials_ProductAssemblyID_ComponentI

D_StartDate  

    ON Production.BillOfMaterials WITH (ONLINE = ON); 

GO 



70 

Statistics 

• Statistical information can be created regarding the 
distribution of values in a column.  

• The query optimizer uses this statistical information 
to determine the optimal query plan by estimating the 
cost of using an index to evaluate the query. 

• A statistics on a column consist of an histogram 
dividing the values in the column in up to 200 
intervals.  

• The histogram specifies how many rows exactly 
match each interval value, how many rows fall within 
an interval, and a calculation of the density of values, 
or the incidence of duplicate values, within an 
interval. 



71 

Statistics 

• Statistics can be created in three ways: 

– Automatically by creating an index 

– Automatically when a column is used in a 

predicate when the AUTO_CREATE_STATISTICS 

database option is set to ON (default),  

– Explicitly with CREATE STATISTICS 



72 

Visualizing Statistics 

DBCC SHOW_STATISTICS ( {'table_name' | 

'view_name'}, target )  

 [ WITH < option > [ , n ] ]  

<option > :: =     STAT_HEADER | DENSITY_VECTOR 

| HISTOGRAM  

target is the name of the object (index name, statistics 

name or column name) for which to display statistics 

information.  

STAT_HEADER | DENSITY_VECTOR | HISTOGRAM 

– Specifying one or more of these options limits the 

result sets returned by the statement. 

 



73 

Visualing Statistics 

• Alternatively, in Management Studio right click on a 

statistic and Properties 



74 

Example 

DBCC SHOW_STATISTICS ('Person.Address', 

IX_Address_StateProvinceID); 

Returns 3 tables: 

• STAT_HEADER 

• DENSITY_VECTOR  

• HISTOGRAM 
 



75 

Columns of STAT_HEADER 

Column name  Description  

Name Name of the statistic. 

Updated  Date and time the statistics were last updated. 

Rows  Number of rows in the table. 

Rows Sampled  Number of rows sampled for statistics information. 

Steps  Number of distribution steps. 

Density  

Selectivity of the first index column prefix excluding the 

EQ_ROWS, which are described in the section about the 

HISTOGRAM option result set. 

Average key 

length  
Average length of all the index columns. 

String Index  

Yes indicates that the statistics contain a string summary index 

to support estimation of result set sizes for LIKE conditions. 

Applies only to leading columns of char, varchar, nchar, and 

nvarchar, varchar(max), nvarchar(max), text, and ntext data 

types. 



76 

Columns of HISTOGRAM 

Column name  Description  

RANGE_HI_KEY  Upper bound value of a histogram step. 

RANGE_ROWS  

Estimated number of rows from the table that fall 

within a histogram step, excluding the upper 

bound. 

EQ_ROWS  

Estimated number of rows from the table that are 

equal in value to the upper bound of the 

histogram step. 

DISTINCT_RANGE_RO

WS  

Estimated number of distinct values within a 

histogram step, excluding the upper bound. 

AVG_RANGE_ROWS  

Average number of duplicate values within a 

histogram step, excluding the upper bound 

(RANGE_ROWS / DISTINCT_RANGE_ROWS). 



77 

Example of HISTOGRAM 

RANGE_HI_KEY RANGE_ROWS    EQ_ROWS       DISTINCT_RANGE_ROWS  AVG_RANGE_ROWS 

------------ ------------- ------------- -------------------- -------------- 

1            0             25            0                    1 

3            0             7             0                    1 

6            0             18            0                    1 

7            0             1579          0                    1 

8            0             231           0                    1 

9            0             4564          0                    1 

10           0             11            0                    1 

11           0             9             0                    1 

14           0             1954          0                    1 

15           0             31            0                    1 

17           0             17            0                    1 

...... 



78 

Statistics Update 

• As the data in a column changes, statistics can 

become out-of-date and cause the query optimizer to 

make less-than-optimal decisions on how to process 

a query.  

• Out-of-date or missing statistics are indicated as 

warnings (table name in red text) when the execution 

plan of a query is graphically displayed using SQL 

Server Management Studio  



79 

Statistics Update 

• When the AUTO_UPDATE_STATISTICS database 

option is set to ON (the default), the query optimizer 

automatically updates this statistical information 

periodically as the data in the tables changes.  

– Unless the statistic has been created with an 

index for which the 

STATISTICS_NORECOMPUTE option was 

specified in the CREATE INDEX statement  

• Almost always, statistical information is updated 

when approximately 20 percent of the data rows has 

changed.  



80 

UPDATE STATISTICS 

• You can manually update the statistics with  

UPDATE STATISTICS table | view  

[  

 { { index | statistics_name }  

 | ( { index |statistics_name } [ ,...n ] ) }  

]  

[ WITH  

 [  FULLSCAN  

 | SAMPLE number { PERCENT | ROWS }  

]  



81 

UPDATE STATISTICS 

• The FULLSCAN clause specifies that all data in the 

table is scanned to gather statistics,  

• The SAMPLE clause can be used to specify either 

the percentage of rows to sample or the number of 

rows to sample. 



82 

Physical Design 

• In order to chose the physical structures to use 

(clustered indexes, nonclustered indexes, indexed 

views, partitions) we can use the Database Engine 

Tuning Advisor  

• Two interfaces are available 

– A standalone graphical user interface tool  

– A command-line utility program, dta.exe, for 

Database Engine Tuning Advisor functionality in 

software programs and scripts. 

 

 

 



83 

Database Engine Tuning Advisor 

• It analyzes the performance effects of workloads run 

against one or more databases.  

• A workload is a set of Transact-SQL statements that 

executes against databases you want to tune.  

• After analyzing the effects of a workload on your 

databases, Database Engine Tuning Advisor 

provides recommendations to add, remove, or modify 

physical design structures in databases in order to 

reduce the execution time of the workload 



84 

Workloads 

• A workload consists of a Transact-SQL script (.sql), a 

SQL Server Profiler trace saved to a file (.trc) or table 

or an XML file (.xml) containing the statements plus 

configuration information 



85 

Recommendations 

• A recommendation consists of Transact-SQL 

statements 

• After Database Engine Tuning Advisor has 

suggested a recommendation, you can optionally: 

– Implement it immediately. 

– Save it to a Transact-SQL script and implement it 

later  

– Modify it so to apply only a subset of 

recommendations 

 



86 

Reports 

• Database Engine Tuning Advisor also returns a 

number of reports 

– Improvement in percent 

– Use of existing physical structures 

– … 



87 

Exploratory Analysis 

• The user can also investigate the impact on the execution time 

of hypothetical structures 

• Example:  

– An administrator just finished using Database Engine Tuning 

Advisor to tune a database and received the 

recommendation (R).  

– After reviewing R, the administrator would like to fine tune R 

by modifying it.  

– After modifying R, the administrator uses the modified 

recommendation as input to Database Engine Tuning 

Advisor and tunes again to measure the performance impact 

of her modifications. 



88 

Tuning Load 

• Tuning a large workload can create significant 

overhead on the server that is being tuned.  

• The overhead results from the many calls made by 

Database Engine Tuning Advisor to the query 

optimizer during the tuning process.  

• We can eliminate this overhead problem by using a 

test server in addition to the production server. 

• Production server: the server used by clients in day 

to day real operations 

• Test server: a server used by developers for testing 

new database configurations 



89 

Test Server 

• Database Engine Tuning Advisor creates a shell 
database on the test server. To create this shell 
database and tune it, Database Engine Tuning 
Advisor extracts from the production server the 
following information: 

– metadata on the production database. This 
metadata includes empty tables, indexes, views, 
stored procedures, triggers, and so on. 

– statistics  

– hardware parameters specifying the number of 
processors and available memory on the 
production server 

 



90 

Tuning 

• After Database Engine Tuning Advisor finishes tuning 

the test server shell database, it generates a tuning 

recommendation. 

• You can apply the recommendation received from 

tuning the test server to the production server. 



91 

Showing the Execution Plan of a Query 

SET SHOWPLAN_XML ON 

This statement causes SQL Server not to execute 

Transact-SQL statements. Instead, Microsoft SQL 

Server returns execution plan information about how 

the statements are going to be executed in a well-

formed XML document.  

SET SHOWPLAN_TEXT ON 

After this SET statement is executed, SQL Server 

returns the execution plan information for each query 

in text. The Transact-SQL statements or batches are 

not executed.  



92 

Showing the Execution Plan of a Query 

• SET SHOWPLAN_ALL ON  

This statement is similar to SET SHOWPLAN_TEXT, 

except that the output is in a format more verbose 

than that of SHOWPLAN_TEXT  


