Survey of

Model-Based Failure Detection
and Isolation in Complex Plants

ABSTRACT: This paper presents a survey
of techniques to detect and isolate failures in
complex technological systems, such as sen-
sor biases, actuator malfunctions, leaks, and
equipment deterioration. The methods are
based on analytical redundancy afforded by
a mathematical model of the system. The
main components of such techniques are re-
sidual generation using the model, signature
generation via statistical testing, and signa-
ture analysis. Model-structural conditions for
failure isolation are introduced together with
transformation methods to implement them.
Sensitivity and robustness considerations are
presented, and a design framework based on
model redundancy is proposed.

Introduction

The detection and diagnosis of faults. in
complex process plants is one of the most
- important tasks assigned to the computers
supervising such plants, The early indication
of incipient failures can help avoid major
plant breakdowns and catastrophies, ones
that could otherwise result in substantial ma-
terial damage and even human fatalities.
Similarly, failure detection and isolation has
become a critical issue in the operation of
high-performance ships, submarines, air-
planes, space vehicles, and structures, where
safety, mission satisfaction, and significant
material value are at stake. Quite recently,
computerized diagnostic systems have been
applied to such mass-produced consumer
equipment as automobiles and household ap-
pliances. By assisting the human operator in
assessing the nature and extent of the fault,
automatic diagnostic systems may contribute
significantly to the fast and proper reaction
to failure situations, with such reactions
ranging from immediate emergency actions
to long-term modification of the maintenance
schedule,

An early version of this paper was presented at
the IFAC Symposium on Microcomputer Appli-
cations to Process Control, Istanbul, Turkey, July
22-25, 1986, and published in Vol 7 of the I[FAC
Proceedings Series, 1987. Janos J. Gertler is with
the School of Information Technology, George
Mason University, Fairfax, VA 22030.

December 1988

Janos J. Gertler

From the very beginning of computer pro-
cess control, most practical systems have
contained some form of failure detection and
diagnosis. In the majority of these systems,
the detection and diagnostic function is rather
simple and is based on straight limit check-
ing. The development of computational
equipment and techniques has set the scene
for the general application of more sophis-
ticated and powerful methods.

In an article written shortly before the
Space Shuttle disaster, Cikanek (1986) de-
scribed the status of the failure detection sys-
tem for ground test of the Shuttle main en-
gine and outlined the general directions for
future development. In the existing system,
limit checking with fixed thresholds on sin-
gle physical variables was the primary ap-

proach. A model-based method was used to

check the operation of valve actuators, but
the information represented by multiple in-
terrelated plant measurements was otherwise
not utilized. This paper calls for a system
integrating a number of detection and iso-
lation approaches, with a strong emphasis on
model-based techniques.

The literature of process fault diagnosis is
not very extensive, especially when com-
pared to other areas of control engineering.
The first major survey was written by Will-
sky (1976) followed by a more recent survey
by Isermann (1984). Three significant books
were published on the subject (Himmelblau,
1978; Pau, 1981; Basseville and Benveniste,
1986).

Nature of the Task

According to generally accepted terminol-
ogy, failure detection and diagnostics consist
of the following tasks (see also Fig. 1):

(1) Failure detection, i.e., the indication that
something is going wrong in the system.

(2) Failure isolation, i.e,, the determination
of the exact location of the failure.

(3) Failure identification, i.e., the determi-
nation of the size of the failure.

While any relative weights attached to the
preceding three components are obviously
subjective, one may venture to say that de-
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Fig. 1. Three layers of process
diagnostics.

tection is an absolute must in any practical
system and isolation is almost equally im-
portant. Failure identification, on the other
hand, while undoubtedly helpful, may not
be worth the extra effort it requires. (As we
will show later, much of the detection and
isolation problem can be handled in a Bool-
ean-logical framework. Failure identifica-
tion, however, seeks numerical estimates
and, therefore, does not render itself to such
treatment.)

Note that failure detection and isolation
are intimately related to the filtering of plant
measurements: in certain schemes, filtering
is used to facilitate isolation. At the same
time, filtering performed to reduce noise ef-
fects and isolation are, in a sense, opposite
activities: while isolation aims at pinpointing
irregularities, filtering tends to hide (smear)
them. In process engineering practice, it is
customary to filter the measurements under
constraints so that they satisfy energy and
material balance equations or other plant
models; this approach is often called data
reconciliation (see, e.g., Gertler and Al-
masy, 1973; Mah et al., 1976; Gertler, 1979;
Stanley and Mah, 1981). Reconciliation and
isolation may use very similar techniques:
However, isolation should precede reconcil-
jation and the latter should be applied -only
after any isolated failure has been removed
(at least computationally) from the system.




Nature of Failures

We will use the words failure and fault as
synonyms (although, strictly speaking, the
term failure suggests complete breakdown,
while a fault may connote something toler-
able).

Almost any classification of failures
(faults) reflects, explicitly or implicitly, the
framework in which the detection/isolation
problem is posed. Our classification corre-
sponds to a model-based framework and is
general enough to serve as a basis for further
discussion. We will consider three classes of
failures:

(1) Additive measurement faults. These are

discrepancies between the measured and

true values of plant output or input vari-
ables. Such faults best describe sensor
biases. They can also be used to describe
actuator malfunctions; now the discrep-
ancy is between the intended (computed)
control and its realization by the actua-
tor.

(2) Additive process faults. These are dis-
turbances (unmeasured inputs) acting on
the plant, which are normally zero and
cause a shift in the plant outputs inde-
pendent of the measured inputs. Such
faults best describe plant leaks, loads,
etc.

(3) Multiplicative process faults. These are
changes (abrupt or gradual) of the plant
parameters. Such faults best describe the
deterioration of plant equipment, such as
partial or total loss of power, surface
contamination, etc.

Additive faults (whether measurement or
process) are distinguished from noise. Noise
is. considered random with zero mean. Ad-
ditive faults are considered deterministic
(e.g., a constant bias or drift) or semideter-
ministic (jumps occurring at random inter-
vals with random amplitudes).

Note that the preceding fault categories,
although convenient from an analytical point
of view, may not describe some practical
failure situations in a natural way. A com-
plete sensor failure (zero output) would have
to be described either as a variable bias (equal
to the true value) or as a multiplicative fault
(some parameter changing to zero). Many
disturbances are not completely additive: the
intensity of a leak, for example, may depend
on a pressure which is a process variable.
An accurate description of this situation
would require nonlinear modeling. Further-
more, an actuator failure might be more nat-
urally described as an additive or multipli-
cative process fault, depending on the nature
of the failure. However, the ‘‘additive mea-

surement fault’” representation of actuator
failures leads to more uniform analytical
treatment.

Approaches to Failure Detection
and Isolation

The approaches to the problem of failure
detection and isolation fall into two major
groups:

o methods that do not make use of a plant
model; and

e methods that do make use of a plant
model.

The rest of- this paper will be devoted to
techniques that rely on a mathematical model
of the plant. The model-free methods are
only briefly reviewed.

(1) Limit checking. Plant measurements are
compared to preset limits; exceeding a
limit indicates a failure situation. In
many systems, there are two levels of
limits: the first level serves for prewarn-
ing only, while the second level triggers
emergency action.

(2) Installation of special sensors. These
may be limit sensors basically perform-
ing limit checking in hardware (e.g.,
limit temperature or pressure) Oor ones
measuring some special variables (e.g.,
sound, vibration, elongation).

(3) Installation of multiple sensors (physical
redundancy). This measure is aimed es-
pecially at detecting and isolating sensor
failures. Measurements of the same vari-
able from different sensors are com-
pared. Any serious discrepancy is an in-
dication of the failure of at least one
sensor. The measurement that is likely
to be correct may be selected in a voting
system. ‘

(4) Frequency analysis of plant measure-
ments. Some plant measurements have a
typical frequency spectrum under nor-
mal operating conditions; any deviation
from this is an indication of abnormality.
Certain types of failure may even have
a characteristic signature in the spectrum
that can be used for failure isolation.

(5) Expert system approach. The usual ex-
pert system approach is orthogonal to the
preceding methods in that it is aimed at
evaluating the symptoms obtained by the
detection hardware or software. The sys-
tem usually consists of a combination of
logical rules of the [IF symptom AND
symptom THEN conclusion] type, where
each conclusion can, in turn, serve as a
symptom in the next rule until the final
conclusion (the specific failure) is

reached. The expert system may work
on the information presented to it by the
detection hardware/software or may in-
teract with a human operator, inquiring
from him or her about particular symp-
toms and guiding him or her through the
entire logical process (Hakami and New-
born, 1983; Kumamoto et al., 1984).

Model-Based Methods

A broad class of failure detection and iso-
lation methods makes explicit use of a math-
ematical model of the plant. In the follow-
ing, the general structure of such methods
and of the models they use will be briefly
introduced, and the problems of isolability,
sensitivity, and robustness will be men-
tioned. A more detailed treatment of these
subjects will be given in the succeeding sec-
tions.

General Structure of Model-Based Methods

Most model-based failure detection and
isolation methods rely on the idea of ana-
Iytical redundancy (Chow and Willsky,
1984). In contrast to physical redundancy,”
when measurements from different sensors
are compared, nOW Sensory measurements
are compared to analytically obtained values
of the respective variable. Such computa-
tions use present and/or previous measure-
ments of other variables and the mathemat-
ical model describing their relationship. The
idea can be extended to the comparison of
analytically generated quantities only, each
one obtained through a different computa-
tion. In either case, the resulting differences
are called residuals.

While residuals are zero in ideal situa-
tions, in practice, this is seldom the case.
Their deviation from zero is the combined
result of noise and faults. If the noise is neg-
ligible, residuals can be analyzed directly.
With any significant noise present, statistical
analysis (statistical testing) is necessary. In
either case, a logical pattern is generated,
showing which residuals can be considered
normal and which ones indicate fault. Such
a pattern is called the signature of the fail-
ure. It should be noted that most failure de-
tection and isolation methods do not utilize
the information embodied in the size of the
residuals beyond their relation to test thresh-
olds.

The final step of the procedure is the anal-
ysis of the logical patterns obtained from the
residuals, with the aim of isolating the fail-
ure or failures that cause them. Such analysis
may be performed by comparison to a set of .
patterns (signatures) known to belong to
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simple failures or by the use of some more
complex logical procedure.

The three stages of the failure detection
and isolation procedure—namely, residual
generation, statistical testing, and logical
analysis—are depicted in Fig. 2 (Chow and
Willsky, 1984).

Note that failure detection and isolation
procedures relying on system identification
techniques can be considered as a special
“class of model-based methods. Rather than
plant variables, the residuals now refer to
plant parameters.

Plant and Failure Models

Most model-based failure detection and
isolation methods rely on linear discrete-time
models. This implies that any nonlinearity is
linearized around some operating point.
Also, continuous-time plants are represented
by their discretized model.

Plant parameters may be varying with
time. ‘“Normal’’ variations are usually small
and slow compared to the dynamics of the
plant, Such variations will be neglected here
for the sake of simplicity. Abrupt and/or sig-
nificant changes, on the other hand, may and
should be considered as multiplicative pro-
cess faults.

The state-space model relates the state
vector x(¢) to the input vector u(z) and output
vector y(#) (all functions of the discrete time
1) using known system matrices A, B, and
C. The well-known state equations are

Xt + 1) = Ax(t) + Bu@® = (1)
y(@) = Cx(®) @)

An equivalent input-output model may be
presented in shift-operator form, with matri-
ces G(z) and H(z) consisting of elements that
are polynomials in the shift operator z and
H being a diagonal matrix:

H(z) y() = G() u@®) 3

The matrices of the input-output model are
related to those of the state model:

G(z) = C[Adjoint (Iz — A)]B
H(z) = [Determinant (Iz — A)]II  (4)
Note that Eq. (3) usually can be simplified
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Stages of model-based failure detection and isolation.

by eliminating, row by row, the common
factors in the H(z) and G(z) matrices.

Introducing v() for additive process faults
and w() for (additive) process noise, and P
and Q for their coefficient matrices, the state
equation [Eq. (1)] becomes

Xt + 1) = Ax() + Bu()
+Pyv() + QW) ()

The input-output equation [Eq. (3)] becomes

H@) y() = G@) u@® + L) v@)
+ M(z) w(®) (6)

Here the matrices L and M are obtained in
accordance with Eq. (4), with B replaced by
P and Q, respectively. Note that the pres-
ence of the new terms in Eq. (5) may influ-
ence H(z) and G(z) since L(z) and M(2) in-
terfere with the simplification of the
equations.

Introduce now Au(?) and Ay(?) for the ad-
ditive measurement fault (bias) on the input
u(r) and output y(?), and éu(r) and Jy(z) for
the measurement noise on the same. With
these, the -measured input fi(f) and output
¥(f) are

i) = u@® + Au@) + u()
yo = y@ + Ay@) + oy (D)

For controlled inputs, there is no sensory
measurement; instead, u(?) is the control sig-
nal and u(?) is its implementation by the ac-
tuators, with Au(f) representing any actuator
malfunction and Su(f) the actuator noise.

Finally, introduce AA(Y), AB(), and
AC(#) for the discrepancies between the
model matrices A, fl, and € and the true
system matrices A, B, and C:

A=A+ AA®D)
B =B+ AB()
¢ =C+ACH ®)

Similarly, let AG(z, #) and AH(z, 7) denote

the discrepancies between the input-output

model G(z), A(z) and the true system G(z)

H(z): ‘
G@ = G@ + AGR, 1)

H(z) = H(z) + AH(Z, ) ©)

Such discrepancies may account for multi-
plicative plant faults (e.g., some parameters
in A changing). Strictly speaking, the true
system matrices vary with time if there are
multiplicative faults; however, this will not
be shown in the notation.

To obtain a complete description of the
system with all the possible faults and noises
taken into account, the true variables u(z)
and y(?) expressed from Eq. (7) and the true
matrices A, B, and C from Eq. (8) or G, H
from Eq. (9) are to be substituted into Egs.
(5) and (2) or into Eq. (6). We defer this
step to the next section, where the generation
of residuals is discussed.

Note that the failure model in Egs. (5)-(9)
depicts the failures as general functions of
time. In some earlier work, explicit failure
models were used, including the time of the
failure’s occurrence (i.e., the time of a jump)
as a parameter. These techniques imply sig-
nificant computational complexity—e.g., a
growing bank of filters. Several approxima-
tions have also been proposed utilizing a fi-
nite bank of filters with periodic resetting.
For more on these methods, which have lost
much of their popularity in the past decade,
refer to Willsky’s 1976 survey.

Isolability, Sensitivity, Robustness

Isolability, sensitivity, and robustness are
quality properties of any failure isolation
procedure that strongly influence the useful-
ness of such procedures.

Isolability is the ability of a procedure to
distinguish (isolate) certain specific faults,
provided their size is large enough. The iso-
lability concepts depend on the statistical test
selected and are linked to the structure of the
system matrices.

Sensitivity is a more qualitative measure,
characterizing the size of faults that can be
isolated under certain conditions. Sensitivity
depends on the size of the respective ele-
ments in the system matrices and on the noise
properties. Closely related to sensitivity is
the time it takes to detect/isolate a certain
failure.

Robustness is the ability of a procedure to
isolate faults in the presence of modeling er-
rors. This is a serious problem since such -
errors are practically inevitable and may in-
terfere seriously with fault isolation. In par-
ticular, they appear the same as multiplica-
tive process faults and can only - be
distinguished from those based on the time
history of the discrepancy.

Isolability, sensitivity, and robustness can,
in most cases, be influenced by the careful
selection and/or transformation of the plant
model. Such model design would usually
happen in the off-line design phase of the



procedure. It may, however, be done on-
line, based on the performance of the pro-
cedure under certain conditions. In this
sense, an on-line model redesign level can
be added to the structure of the failure iso-
lation procedure (Fig. 2).

Generating the Residuals

Residuals may be generated in a number
of different ways. We will discuss subse-
quently the straightforward use of the input-
output equation and of the state equation,
followed by the application of the observer,
Kalman filtering, and identification con-
cepts. We will also indicate how faults and
noise appear in the residuals obtained by
some of the techniques listed.

. Straight Input-Output Residuals

After a slight rearrangement, Eq. (3) is
suitable for generating residuals. Introduce
the combined input-output vector q(r) and
the combined system matrix F(z):

q®" = [’ y»'
F@) = [GR), —H({2)] (10)

Now the ideal input-output equation can be
written as -

F@)q®» =0 (11)

Applying this equation to the measurements
() with the model matrix ¥(z) yields a set
of *“parity equations,”’ where the right-hand
side is not zero, in general, but e(¥), the vec-
tor of “‘residuals’’:

F) q(t) = e() (12)

A simplified version of this approach, known
as static balance equations, has been popular

in the chemical engineering literature. Orig- -

inally, such equations contained a static sys-
tem matrix F and the variables in q were
restricted to material and energy flows (Va-
clavek, 1974; Almasy and Sztano, 1975;
Stanley and Mah, 1977; Romagnoli and Ste-
phanopoulos, 1981). A first-order dynamic
extension is proposed by Rooney et al.
(1978). The full-blown dynamic case is dis-
cussed in Gertler and Singer (1985) and Gert-
ler et al. (1985). A detailed analysis of the
properties of residuals obtained from dy-
namic input-output equations is given also
by Chow and Willsky (1984).

The residuals e(r) are the result of the
combined noises, additive faults, and model
discrepancies (multiplicative faults/model-
ing errors). According to Egs. (6), (7), and
(9), this relationship can be expressed as de-
picted in Fig. 3 and indicated in the follow-
ing equation, where the first line contains the

v(t) 3

Plant G@)

Additive

faults

AXx(t) A
Sensor > F(2)

Model  x(1)
discrepancy >

AF(z,t)

Residuals

B
A

w(t)

Plant H(z)

Noise

dx(t) A
Sensor > F(z)

Fig. 3. Components of input-output residuals.

noise terms; the second line, the additive
fault terms; and, the third line, the model
discrepancy term.

e(®) = F(2) 5q(t) — M) w(?)
+ F(2) Aq(t) — L(2) v(»)
+ AFQ2) q0)
State-Related Residuals

13y

If the state variables are directly measur-
able or if they are computable from the out-
put measurements (matrix C is invertible)
then the residuals can be expressed directly
in terms of the state variables. The nominal
state can be computed by Kalman filtering
or by an observer.

Matrix C usually is not invertible and,
thus, direct comparison of the state is not
possible. A workable approach in such cases
is to define the residuals in terms of the out-
put. If the residual is defined as the differ-

- ence between the measured output §(¢) and

an estimate obtained by Kalman filtering, it
is called the innovation:

e =3y - Ck(tlr - 1 (14)

Here %(¢|t — 1) is the Kalman estimate of
the state. If the model is perfectly accurate
and the noise is white with zero mean, then
the innovation sequence of a fault-free sys-
tem is also white with zero mean. This prop-
erty can be utilized to construct a number of
statistical tests, as described in the next sec-
tion, and it is mostly responsible for the early
popularity of the method (Willsky, 1976).
Another popular approach has been the use
of parallel observers. If the state vector (or
part of it) is estimated by two observers based
on different (although possibly overlapping)
sets of outputs, a residual can be defined as

shown, where %, and %, are the two esti-
mates:

e() = %,(1) — R,(0) (15)

Since the observer errors are e, (r) = &;(1) —
x(®), i = 1, 2, the residuals are, in fact,

e@) = e;(1) — &) (16)

The observers can be constructed so that
their errors e, and e, depend on some noise
and modeling errors in identical or at least
similar ways, thus leading to a robust fault
isolation scheme (Patton and Willcox, 1985;
Wunnenberg et al., 1985). Similar schemes
can be constructed using parallel Kalman fil-
ters (Tylee, 1983). The application of par-
allel observers to physically redundant sen-
sors has been reported by Stuckenberg
(1985). The combination of observers with
identification techniques was proposed by
Watanabe and Himmelblau (1983).

In distributed systems, such as flexible
structures, the plant variables depend not
only on time but also on the spatial position.
To handle this situation, the variables may
be decomposed using time- and space-de-
pendent factors. With r denoting the spatial
position, ¥,(r) the space-dependent so-called
eigenfunctions, and v,(f) the time-dependent
modal coordinates, the outputs may be ex-
pressed as

Y0 = L0 un  AD

The modal coordinates may be estimated
from a set of observations y(r;, ) belonging
to discrete spatial points (modal filtering).
Using the estimated modal coordinates and
Eq. (17), estimates of the observations y(7;,
1) are obtained that, compared with the actual
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observations, produce the output residuals
(Baruh and Choe, 1987).

Identification-Based Methods

In identification-based methods, a resid-
ual-like quantity is defined in relation to the
plant parameters. The plant is identified in a
fault-free reference situation, then repeatedly
on-line. The results of the latter are com-
pared to the reference values and a parameter
error (residual) is formed.

In the works of Isermann and coworkers
(Isermann, 1984 and 1985; Geiger, 1984),
the underlying physical parameters of the
plant are computed from the identification
resulits, and the comparison is performed on
these, Rault et al. (1984) compute recur-
sively, the covariance matrix of the identi-
fied parameters and compare it to reference
covariances. Kumamaru et al. (1985) work
with parameter estimates obtained from re-
peated identification runs and compare the
consecutive results to each other, without re-
sorting to a reference value,

Identification appears as ,an auxiliary
method in a number of approaches. In Wa-
tanabe and Himmelblau (1983), a least-
squares identifier is used to estimate the mul-
tiplicative process faults, based on variable
estimates obtained by an observer. In Halme
and Selkainaho (1984), plant parameters are
estimated for an adaptive Kalman filter that,
in turn, generates innovation-type residuals.

Statistical Testing

Whichever of the approaches discussed in
the previous section is used, the resulting
residual vector is the combined effect of
faults and noise (and of modeling errors, but
these will be neglected at this point). If there
is no noise, any nonzero residual is an in-
dication of a fault condition so that the log-
ical analysis of the fault situation can be per-
formed directly on the residuals. However,
the assumption of zero noise is not a realistic
one in most cases; even the round-off errors
in the residual computation may cause non-
zero residuals. Therefore, in general, the ef-
fect of faults on the residuals has to be sep-
arated from that of noise, This is done by
statistical testing, making use of the fact (or
assumption) that the noise is random with
zero mean while failures are deterministic or
semideterministic (as explained in the Intro-
duction).

Direct Parallel Testing

The most straightforward approach is the
direct parallel testing of the residuals. Fol-
lowing each computation of the residuals, a
separate test is applied to each element of
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the residual vector. Based on the outcomes
of the individual tests, a Boolean signature
vector e(f) is formed so that ;(r) = 1 if ¢;(¢)
fired the test, and ¢,(z) = 0 if it did not.
Such a test is especially easy to apply if
the residuals are generated from an input-
output model. This is because, in this case,

the residuals of the fault-free system are out-

puts of a discrete moving average (nonre-
cursive) system driven by the noise. This
implies that the fault-free distribution of the
residuals can be derived from the noise dis-
tribution. In particular, if the noise is nor-
mally distributed, it is enough to obtain the
noise-free variances of the residuals.

Further simplification results if the noises
are white and mutually independent. From
Eq. (13), the fault-free residuals are

e() = F(2) 8q() - M) w@r)  (18)

If S, and 8,, are the covariances of noises 5q
and w, respectively, and » is the order of the
system, then the covariance matrix of the
residuals, S,, is obtained as

n
= 2 (S F7 + Ms,M7] (19)

The diagonal elemerits of S, are the individ-
ual residual vatriances. Based on these and
on a selected level of confidence, the thresh-
olds for each residual can be obtained using
normal distribution. To avoid frequent false
alarms, usually a high level of confidence
(99 percent or higher) is selected.

If the noise covariances are not available,
the residual variances may be estimated from
observations of fault-free periods. In this
case, t-distribution is to be used (Vaclavek,
1974), although, with a large sample size,
this approaches normal distribution,

The parallel test is relatively easy to ad-
minister and yields a distinctive binary sig-
nature that may serve as a basis for failure
isolation. A disadvantage of this approach is
that it does not utilize the additional infot-
mation represented by the off-diagonal ele-
ments of the covariance matrix S,.

Multivariate Testing

Obviously, the elements of the fault-free
residual vector are not independent of each
other, even if the noise is white and uncor-
related. To utilize this additional informa-
tion, Newman and Perkins (1979) suggested
a multivariate statistical test. In the p-di-
mensional space of the residuals e(?) = [e, (),

p(t)] , any constant probability density
p(e,, <ves €) = const ““jsotherm’’ is de-
scribed by a closed hypersurface. Selecting
a level of confidencé implies choosing one
such surface. If the point defined by e(z) is

outside the limit surface, the system is de-
clared faulty. Beyond the obvious difficulty
of administering this test to higher-dimen-
sional residual vectors, the main disadvan-
tage of this approach is that it provides only
a faulty/not faulty decision that does not fa-
cilitate the isolation of the failure.

Compound Scalar Testiﬁg

Another approach to testing the residuals
is to introduce a single scalar statistic, e.g.,
as ‘

N0 =€) 8. 'e() (20

~ (Romagnoli and Stephanopoulos, 1981). If

the noises are normally distributed and there
are no faults, then the statistic A follows the
chi-square distribution with o degrees of
freedom (p is the number of residuals).
This test is easy to administer, however,
similar to the multidimensional test, it pro-
vides a single binary inference. Romagnoh
and " Stephanopoulos proposed a sequential
procedure, whereas equations are -systemat-
ically eliminated until the test indicates a
fault-free system. An important component
of theit method is an algorithm to obtain the
new A following each elimination step re-

. cursively, without complete recomputation.

Sequential Likelihood Ratio Test

This test, which is rather popular in aero-
space applications, compares the hypothesis
H, of nonzero residual mean to the null hy-
pothesis Hy of zero mean. The decision is
based on the likelihood ratio

L 2AE©, . e®|H)
p{e0),..., en)|Hp}

Here ¢; is the ith element of the residual vec-
tor, The numerator and the denominator, re-
spectively, are the probabilities of the ob-
served time series under the two hypotheses.
If the residuals are independent and normally
distributed, the logarithmic likelihood ratio
is very easy to compute: it becomes the dlf-
ference of two sums.

The sequential likelihood fatio test has
been applied to Kalman filter innovations by
Chien and Adams (1976), Willsky and Jones
(1976), Bonivenito and Tonielli (1984), and
Uosaki (1985), and to residuals from input-
output parity equations by Deckert et al.
(1977). o

In most methods, the likelihood ratio is
compared to two limits (normal/faulty), with
a gray range between them. When it lies in
the gray range, there is no decision and fur-
ther innovation values are taken. In this
sense, the test is sequential.

One d1ﬁiculty in applying this test is the
need for a numerical value of the innovation

NG = @



mean in H;. This is either a preset nominal
value (Chien and Adams, 1976) or is ob-
tained by maximum likelihood estimation
from the innovations (Willsky and Jones,
1976).

Another difficulty is the accumulation of
normal-state information in the likelihood
ratio before the actual situation changes from
H, to Hj, resulting in a delayed detection of
the change. Chien and Adams propose a
scheme in which such daccumulations are re-
set automatically to zero. Uosaki’s solution
is a backward evaluation of the likelihood
ratio, starting with ¢;(f) and continuing back-
ward until a decision is reached. Willsky and
Jones include the time of the change as an
explicit but unknown variable, making the
problem formulation more precise but the al-
gorithm much more complex.

The test limits are derived either from
specified probabilities for false/missed
alarms (Uosaki) or from the expected time
between two false alarms and the expected
time of detecting a failure.

Failure isolation may be enhanced by run-
ning a set of parallel tests, with different al-
ternative hypotheses H,, H,, etc., based on
the same’ innovations sequence (Bonivento
and Tonielli).

The likelihood ratio test is performed in
compound scalar form by Basseville et al.
(1987) and Rougee et al. (1987) to detect
parametric changes in the transfer function
denominator, without knowing the numera-
tors, in multivariable systems. A vector *‘in-
strumental statistic’’ is generated that char-
acterizes the goodness-of-model fit. The test
is applied to determine if this vector has zero
mean; the mean is estimated for the alter-
native (nonzero) hypothesis. From the in-
strumental statistic vector, a single scalar
statistic is formed and tested against the ap-
propriate chi-square distribution. This test is
statistically efficient but provides a single bi-
nary decision; therefore, it does not facilitate
failure isolation. For this latter purpose, pat-
allel models are used, each one derived un-
der a specific failure hypothesis, and sepa-
rate tests are applied to each of the models.

Bayesian Approach

Some failure detection and isolation
schemes utilize an a priori probability dis-
tribution of the occurrence of a set of fail-
ures. Such a priori distribution may be ob-
tained from the observation of an extended
history of the plant or may be assumed as
design parameters, ‘

In the nonlinear filtering scheme devel-
oped by Loparo and coworkers (Loparo et
al., 1986; Eckert et al., 1986), failure events
are modeled as sudden shifts in parameters

governed by a random jump process with an
a priori known distribution. Complete sys-
tem models are determined for each of the
possible failure modes. A nonlinear detec-
tion filter calculates the conditional proba-
bility of the system operating in each of such
failure modes. While no finite-dimensional
exact solution to the problem is known, rea-
sonable approximations are possible using a
finite set of Kalman filters and the solution
of a stochastic differential equation. The al-
gorithm is rather complex computationally,
however, in simulation studies, it exhibits
impressive robustness properties.

Isolability Conditions

One of the main questions to be asked in
connection with any failure detection and
isolation method is whether it is capable of
isolating specific failure types from each
other. The answer lies primarily in the struc-
ture of the model used in residual generation
and, to a lesser degree, in the statistical test
applied. In the following section, the con-
cepts of deterministic (zero-threshold) and
statistical (high-threshold) isolability will be
introduced, together with a transformation
technique to bring the model to the desired
structure. To simplify the discussion, only
bias faults in an input-output model will be
considered. The concepts can be readily ex-
tended to process faults in the same model
structure. They apply to the state-variable
formulations as well, but the details depend
on the method of residual generation. It will
be assumed that no modeling errors are
present.

Incidence Matrices

The structure of a model matrix F is char-
acterized by its incidence matrix

¢ = Inc (F) (22)

The incidence matrix is a Boolean matrix
with its elements defined as

fi=0 (@23

If F is the system matrix of an input-output
model as defined in Egs. (3) and (10), then
¢; = 1 means that a bias on the jth variable
influences the ith residual and ¢; = 0 means
that it does not.

=0, if

Deterministic (Zero-Threshold) Isolability

Consider Eq. (13), where the residuals are
described in an input-output setting. Assume
that the measurement biases Aq(f) are the
only possible failures and there is no noise.

Thus,
e() = F(z) Aq() 24)
In such a deterministic (noise-free) sitna-
tion, the Boolean signature vector €(?) is ob-
tained simply as

Gi(t) =1, if ei(t) #= 0

=0, if =0 (5

Obviously, the signature vector in response
to a single fault Ag; # 0 is

e(t|Ag) = ¢ (26)

where ¢ ; is the jth column of the incidence
matrix ¢. This implies that, for the detection
of any single bias fault Ag;, its column 0,
must be nonzero; for the isolation of the
same, ¢ ; must be different from all other
columns of &. ‘

The preceding condition, which we call
deterministic or zero-threshold isolability, is
rather obvious and has been recognized by
several authors (e.g., Ben-Haim, 1980; Gert-
ler and Singer, 1985).

Statistical (High-Threshold) Isolability

Consider now Eq. (24), with measurement
noise 6q(#):

et) = F@) Aq) + F() 8q()  (27)

Assume that a direct parallel test is applied
to the residuals. The signature vector e(2) is
now obtained as

&0 =1, if |g®)| =y

e <m (8)

Here 7, is the threshold for the ith residual.
If a bias Ag; is large enough, it will trigger
the test on all the residuals it influences, i.e.,
Eq. (26) holds. This situation will be re-
ferred to as full firing. In general, there is
more penalty on a false alarm than on miss-
ing a small fault. Therefore, the thresholds
will be set relatively high. [In Satin and Gates
(1978), for example, the thresholds are set
so that missed detections are 20 times- as
likely as false alarms.] On the other hand,
the thresholds are determined by the fault-
free distribution of the residuals; therefore,
the limit value of a fault Ag; that triggers the
test will, in general, be different for each
residual. Thus, a fault of intermediate size
may not trigger the test on all the residuals
it influences. This phenomenon, called par-
tial firing, results in a degraded signature
€(t|Agy), in that some of the 1 — s in ¢ ; will
be replaced by 0 — s. Now, if such a de-
graded signature is identical with another
column ¢ ;, then the fault Ag; is misisolated
as Ag,. ‘

=0, if
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A model structure that guarantees that par-
tial firing does not lead to misisolation is
called a statistically or high-threshold iso-
lable structure (Gertler and Singer, 1985;
Gertler et al., 1985), A sufficient condition
for statistical isolability of single bias fail-
ures is that ® has a column-canonical struc-
ture (i.e., each column has the same number
of 0 — s, each in a different configuration).

Barring other disturbing effects (such as
modeling errors or extreme noise values), a
fault in a statistically isolable structure

o Is either detected and properly isolated (if
large enpugh); or

~e It leads to a signature that does not belong
to any known fault (if intermediate size);
or

o It is completely missed (if too small).
Model Transformation

System models in their original (primary)
form seldom satisfy the conditions of deter-
ministic isolability, let alone statistical iso-
lability. To attain the desired structure, a
model transformation may be performed. A
secondary model thus obtained may have the
same number of equations (residuals) as the
primary model, or fewer or more. In the lat-
ter case, some of the equations are linearly
dependent on the others but their incidence
structure is different.

Model transformation may be looked on
as a reshuffling of zeros in the parity equa-
tions. The effect of some variables (faults)
is eliminated from certain equations at the
expense of introducing ‘other variables. In
the case of Eq. (3), this implies eliminating
input variables and introducing more than
one ‘output per equation. The number of ze-
ros per equation cannot be increased by this
transformation.

Technically, the transformation requires
the solution, for the transforming matrix
T(z), of the matrix equation

F*z) = T(z) F(2) 29)

The desired model F*(z) is specified in terms
of its incidence matrix &*. Each zero in &"
determines a linear algebraic equation; the
solution of these yields the elements of T (z)
[the solution is separable according to the
rows of T(z)]. The number of elements in
T(z) must be at least as much as the number
of zeros in $*,

As’is easy to see, this model transforma-
tion is governed by combinatorial rules. For
anything but the most trivial systems, an ex-
tremely large number (hundreds or thou-
sands) of secondary models may be derived,
each satisfying the isolability conditions.

Zeros and/or linear dependence (even if it
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concems parts of rows/columns) in the pri-
mary model matrix reduce the number of
feasible secondary models. In particular, full-
column dependence indicates that isolability
cannot be attained by analytical means; ad-
ditional sensors are necessary.

The preceding transformation technique
was introduced in Gertler and Singer (1985)
and Gertler et al., (1985). Some aspects were
first developed in Shutty, 1984.

A somewhat different approach to model
generation/transformation was reported by
Chow and Willsky (1984). In their paper,
linearly independent sets of input-output par-
ity equations are derived, based on the un-
derlying state-space model and observability
considerations. Further parity equations are
then generated as linear combinations of ele-
ments from a basic set. A special case is
discussed by Massoumnia and Vander Velde
(1988), where each parity equation contains
only one output and several inputs, or one
input and several outputs. Ben-Haim (1983)
applied a different generalization (transfor-
mation) to the state vector to tailor the sig-
nature structure of statevariable-based resid-
uals to certain types of failure.

Sensitivity and Robustness

Because an isolable model structure guar-
antees isolation if a failure is large enough,
it is also of interest what failure size is really
necessary to trigger the tests. This question
may be answered by sensitivity analysis.
Sensitivity aspects also may play a role in
the selection of the desired model; filtering
may be applied to improve sensitivity within
a certain model framework. ‘

Closely related to sensitivity is the aspect
of robustness of the failure detection and iso-
lation algorithm in the face of modeling er-
rors. Such errors are present almost inevi-
tably and may interfere seriously with the
isolation of failures.

Modeling errors appear as discrepancies
between the true parameters of the plant and
the parameters of the model (they may reflect
real parameter discrepancies or an improper
model structure). Such modeling errors are
indistinguishable from certain multiplicative
process faults, especially on the basis of mo-
mentary signatures. The temporal behavior
of the signatures may provide some clue
since changes may most likely be caused by
failures, although a change of the operating
point also may result in a modeling error in
the linear approximation of a nonlinear sys-
tem. v

Modeling errors also may interfere with
the isolation of additive failures since they
contribute to the residuals and may falsify

the failure signatures. With the extension of
the isolability concept to certain modeling
errors, the failure detection and isolation al-
gorithm can be desensitized with respect to
those errors. Robustness considerations also
may be taken into account in the model se-
lection/transformation procedure.

Measure of Sensitivity

In a statistical testing framework, a pos-
sible measure of sensiiivity is the marginal
value of a fault that triggers the test, if the
momentary value of the noise is zero.
(Strictly speaking, this is an inverse sensitiv-
ity measure.) If the residuals are tested in
parallel, this marginal triggering value of a
fault is different, in general, for each resid-
ual:

Ty = milfy (30)

Here 7 is the marginal value of the jth fault
that triggers the test on the ith residual and
n; is the threshold for the ith residual. The
threshold is related to the fault-free variance
of the residual that depends on the noise and
on the system matrices; see, e.g., Eq. (19).
The parameter f;; characterizes the influence
of the jth fault on the ith residual; for an
additive fault, it is constant. In a static sys-
tem, fj; is the respective element of the sys-
tem matrix F. In a dynamic input-output
model [Eq. (12) or (13)], this may be the
steady-state gain of the respective element
of the matrix polynomial F(z):

fi = @)= 3D

It is not certain, however, that the maximum
fault effect on the residual will occur in
steady state: for example, f; may be of a
differentiating nature (Sundar, 1985).

Even if we disregard the preceding uncer-
tainties in the definition, the triggering val-
ues are difficult to work with since they con-
stitute a matrix characteristic of failure
sensitivity. On the other hand, the selection
of any scalar measure of sensitivity implies
(arbitrary) preferences. Thus, such sensitiv-
ity considerations do not lead to a straight-
forward framework for failure detection and
isolation algorithm design.

Improved Sensitivity via Filtering

Failure sensitivity canbe ihproved by fil-
tering the residuals (Evans and Wilcox;
1970; Gertler and Singer, 1985). The idea is
to reduce the effect of (higher-frequency)
noise while maintaining the effect of (lower-
frequency) faults. A simple first-order filter
is

er(®) = aeg(t — 1) + 1 ~ e  (32)



This can be designed so that the fault-free
variance of eg;(f) is much smaller than that
of ¢;(t), although their mean is the same. In
fact, the variance can be reduced to any de-
sired value, at the expense of a delay in the
detection/isolation.

This type of filter works well if the resid-
ual equations. are static or, in the case of
dynamic equations, if the residuals depend
on the faults in a proportional fashion. If the
relationship is of a differentiating nature, fil-
tering may reduce failure sensitivity. There-
fore, there may be a need for a number of
parallel filters with different coefficients
(Sundar, 1985). On-line adaptation of the fil-
ter,. based on the momentary signature pat-
tern, may be an even more promising ap-
proach. This may be achieved in a rule- and
knowledge-based framework.

Enhanced Robustness
via Algebraic Cancellation

Robustness of the failure detection and
isolation algorithm can be improved by de-
sensitizing residuals with respect to certain
modeling errors. This may be achieved by
explicit algebraic cancellation of some terms
in the residual equations. This is basically
the extension to modeling errors of the con-
cept of isolability and model transformation.

Residuals obtained from input-output re-
lationships cannot be desensitized, by alge-
braic cancellation, to uncertainties (errors) in
the F(z) matrix, only to those of some un-
derlying parameters (Gertler et al., 1985).

Such underlying parameters may be those of

a state-space model or of a physical system
model. Since the “coeﬁicients” of the un-
certainties to be eliminated are process vari-
ables (measurements), the cancellation is de-
pendent on the operating point, i.e., part of
the model transformation may have to be
performed on-line.

The cancellation concept has been applied
to observer-based residuals as well. If the
residuals are obtained as the difference be-
tween two observer outputs, the observers
can be designed so that some uncertainties
of the state model matrices are ineffective
(Patton and Willcox, 1985). This method,
too, is subject to limitations depending on
the frequency (speed of change) of plant
variables. Observers can be designed to ex-
hibit exact zera sensitivity with respect to
modeling errors in the state equation, pro-
vided that all plant inputs and some outputs
are guaranteed to be fault-free (Watanabe and
Himmelblau, 1982).

Reachable Measurement Intervals

The problem of modeling errors has been
approached in a straightforward manner by

Horak and coworkers (Horak and Goblirsch,
1986; Horak and Allison, 1987). Given the
input variables and the uncertainty range of
the parameters of the state-space model, the
reachable intervals of the output variables
are explicitly computed. The technique is
based on Pontryagin’s optimum principle. To
ease the computational complexity of the al-
gorithm, several approximations are em-
ployed. The concept of reachable intervals
is easily extended to include plant and mea-
surement noise. Once the reachable intervals
have been obtained, they serve as dynamic
thresholds for the momentary measurements.
The method is attractive for failure detection
in the presence of modeling-errors but needs
further development before it can effectively
support failure isolation.

Design for Robusmess

As pointed out earlier, usually a large
number of different models can be generated
by transformation, all of which describe the
same physical system. These models have
different structure and parameters and, of
course, different sensitivity and robustness
properties. This great multitude of models
makes it possible, at least in principle, to
select the one that is the best from the point
of view of sensitivity and/or robustness.

There are two major reasons why this se-
lection-is rather difficult to realize. First, it
is generally impossible to formulate a single
measure describing the required sensitivity
and robustness properties, especially since
these requirements usually vary with time
(with the failure/noise/modeling error situ-
ation). Second, even if the requirements are
clearly formulated, the large number of pos-
sible models rules out an analytical solution.

Chow and Willsky (1984) gave a minimax
formulation for the robust model design
problem, seeking the best parity equations
as the ones resulting in the smallest expected
residual under the worst modeling error for
a fault-free system. This formulation is con-
ceptually clear but too complex for practical
design. Approximate solutions in simple
cases are, however, possible.

Lou et al. (1986) report an elegant solution
for the case when model uncertainty is rep-
resented by a finite set of slightly different
possible model variants. In the framework
of a geometric interpretation of the problem,
those parity equations are sought that are
maximally- ‘‘orthogonal’’ to some normal-
ized average of the model variants. The so-
lution implies the singular-value decompo-
sition of a composite model matrix and
provides the ‘‘most robust’’ parity equa-
tions, together with a scalar measure of their
global robustness.

If the design is performed with isolability
in mind, the structural constraints somewhat
limit the model choice. Still, there is a com-
binatorial multitude of structurally suitable
models, leaving ample room for robustness
considerations. In this framework, specific
robustness measures, defined as inverse sen-
sitivity relative to modeling errors in certain
underlying parameters, seem more appropri-
ate than global measures (Gertler, 1986b).
A set of models, each one best for one of
these measures, can be found in a discrete
search procedure. Such search algorithms are
sufficiently effective for off-line model de-
sign. The resulting models are then used on-
line, in parallel. While most failures may,
under normal circumstances, be isolated
based on a single model, the use of multiple

" models will significantly improve the overall

robustness of the isolation procedure (Gertler
and Singer, 1989).

" Conclusion

The main features of model-based failure
detection and isolation methods have been
surveyed in this paper. Several techniques to
generate residuals from plant measurements
and to obtain failure signatures via the sta-
tistical testing of the residuals have been dis-
cussed. It has been pointed out that the major
quality issues of failure detection and isola-
tion algorithms are isolability, sensitivity,
and robustness. Isolability is related primar-
ily to the structure of the residual-generating
model and can be achieved by appropriate
model transformation. Sensitivity and ro-
bustness requirements may vary with the
failure/noise/modeling error situation and are
best taken into consideration in a design
framework that makes use of the model re-
dundancy afforded by transformation.
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