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Symbols and Abbreviations

The symbols and abbreviations listed here are used unless otherwise stated.

ARMAX autoregressive moving average exogenous

ARX autoregressive exogenous
BFDF Beard fault detection filter
DOS dedicated observer scheme
EE equation error

EIV errors-in-variables

FDD fault detection and diagnosis
FDI fault detection and isolation
FFT fast Fourier transform

GK Gustafson-Kessel

GOS generalized observer scheme
IGV inlet guided vane

KF Kalman filter

LS least-squares

MIMO multiple-input multiple-output
MISO multiple-input single-output
MLP multiLayer perceptron

NN neural network

00 output observer

OLS ordinary least-squares

RBF radial basis function

RLS recursive least-squares

SISO single-Input single-Output
TS Takagi-Sugeno

UIKF unknown input Kalman filter

UIO unknown input observer






1. Introduction

There is an increasing interest in theory and applications of model-based
fault detection and fault diagnosis methods, because of economical and
safety related matters. In particular, well-established theoretical develop-
ments can be seen in many contributions published in the IFAC (Inter-
national Federation of Automatic Control) Congresses and IFAC Sympo-
sium SAFEPROCESS (Fault Detection, Supervision and Safety of Tech-
nical Processes) [Isermann and Ballé, 1997, Isermann, 1997, Patton, 1999,
Frank et al., 2000].

The developments began at various places in the early 1970s. Beard
[Beard, 1971] and Jones [Jones, 1973] reported, for example, the well-known
“failure detection filter” approach for linear systems.

A summary of this early development is given by Willsky [Willsky, 1976].
Then Rault and his staff [Rault et al., 1971] have considered the application
of identification methods to the fault detection of jet engines. Correlation
methods were applied to leak detection [Siebert and Isermann, 1976].

The first book on model-based methods for fault detection and diagnosis
with specific application to chemical processes was published by Himmelblau
[Himmelblau, 1978]. Sensor failure detection based on the inherent analytical
redundancy of multiple observers was shown by Clark [Clark, 1978].

The use of parameter estimation techniques for fault detection of
technical systems was demonstrated by Hohmann [Hohmann, 1977], Baki-
otis [Bakiotis et al., 1979], Geiger [Geiger, 1982], Filbert and Metzger
[Filbert and Metzger, 1982].

The development of process fault detection methods based on mod-
elling, parameter and state estimation was then summarised by Isermann
[Isermann, 1984] and [Isermann, 1997]

Parity equation-based methods were treated early
[Chow and Willsky, 1984], and then further developed by Patton and
Chen [Patton and Chen, 1994b], Gertler [Gertler, 1991], Hofling and
Pfeufer [Hofling and Pfeufer, 1994].

Frequency domain methods are typically applied when the effects of faults
as well as disturbances have frequency characteristics which differ from each
other and thus the frequency spectra serve as criterion to distinguish the
faults [Massoumnia et al., 1989, Frank et al., 2000, Ding et al., 2000].
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The developments of fault detection and isolation methods to
the present time is summarised in the books of Pau [Pau, 1981],
then Patton et al. [Patton et al., 2000, Basseville and Nikiforov
[Basseville and Nikiforov, 1993], Chen and Patton [Chen and Patton, 1999],
Gertler [Gertler, 1998], Isermann [Isermann, 1994b] and in survey papers by
Gertler [Gertler, 1988], Frank [Frank, 1990] and Isermann [Isermann, 1994a].

Within IFAC, the increasing interest in this field was taken into account
by creating first in 1991 a SAFEPROCESS (Fault Detection Supervision and
Safety for Technical Processes) Steering Committee which then became a
Technical Committee in 1993.

The first IFAC SAFEPROCESS Symposium was held in Baden—Baden,
Germany in 1991 [Isermann and Freyermuth, 1992], and the second in Espo,
Finland in 1994. The third symposium was scheduled at Hull, UK in 1997
and the fourth one was held in Budapest, Hungary in June 2000. The fifth is
expected at Washington DC in July 2003.

Another tri—ennial series of IFAC Workshop exist for “Fault detection
and supervision in the chemical process industries”. Workshops were held in
Newark, Delaware, Newcastle UK, Lyon and Korea between 1992 and 2001.

Most contributions in fault diagnosis rely on the analytical redundancy
principle. The basic idea consists of using an accurate model of the system
to mimic the real process behaviour. If a fault occurs, the residual signal
(i.e. the difference between real system and model behaviour) can be used to
diagnose and isolate the malfunction.

Model-based method reliability, which also includes false alarm rejection,
is strictly related to the “quality” of the model and measurements exploited
for fault diagnosis, as model uncertainty and noisy data can prevent an ef-
fective application of analytical redundancy methods.

This is not a simple problem, because model-based fault diagnosis meth-
ods are designed to detect any discrepancy between real system and model
behaviours. It is assumed that this discrepancy signal is related to (has a
response from) a fault. However, the same difference signal can respond to
model mismatch or noise in real measurements, which are erroneously de-
tected as a fault. These considerations have led to research in the field of
“robust” methods, in which particular attention is paid to the discrimination
between actual faults and errors due to model mismatch.

On the other hand, the availability of a “good” model of the monitored
system can significantly improve the performance of diagnostic tools, min-
imising the probability of false alarms.

This monograph is devoted to the explanation of what is a “good” model
suitable for robust diagnosis of system performance and operation. The book
also explains how “robust models” can be obtained from real data. A large
amount of attention is paid to the “real system modelling problem”, with
reference to either linear and non-linear model structures. Special treatment
is given to the case in which noise affects the acquired data. The mathemat-
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ical description of the monitored system is obtained by means of a system
identification scheme based on equation error and errors—in—variables mod-
els. This is an identification approach which leads to a reliable model of the
plant under investigation, as well as the estimation of the variances of the
input—output noises affecting the data.

The purpose of the monograph is to provide guidelines for the modelling
and identification of real processes for fault diagnosis. Hence, significant at-
tention is paid to practical application of the methods described to real system
studies, as reported in the last chapters.

In particular, this first chapter of the book outlines a new a common
terminology in the fault diagnosis framework and gives some discussion and
summary of developments in the field of fault detection and diagnosis based
on papers selected during 1991-2001.

1.1 Nomenclature

By going through the literature, one recognises immediately that the termi-
nology in this field is not consistent. This makes it difficult to understand the
goals of the contributions and to compare the different approaches.

The SAFEPROCESS Technical Committee therefore discussed this mat-
ter and tried to find commonly accepted definitions. Some basic definitions
can be found, for example, in the RAM (Reliability, Availability and Main-
tainability) dictionary [RAM, 1988], in contributions to IFIP (International
Federation for Information Processing) [IFI, 1983].

Some of the terminology used in this book is given below. These are based
on information obtained from the SAFEPROCESS Technical Committee and
are considered “on—going” in the sense that new definitions and updates are
being made.

1. States and Signals

Fault
An unpermitted deviation of at least one characteristic property or
parameter of the system from the acceptable, usual or standard con-
dition.

Failure
A permanent interruption of a system’s ability to perform a required
function under specified operating conditions.

Malfunction
An intermittent irregularity in the fulfilment of a system’s desired
function.

Error
A deviation between a measured or computed value of an output
variable and its true or theoretically correct one.
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Disturbance
An unknown and uncontrolled input acting on a system.
Residual
A fault indicator, based on a deviation between measurements and
model-equation-based computations.
Symptom
A change of an observable quantity from normal behaviour.

2. Functions

Fault detection
Determination of faults present in a system and the time of detection.

Fault isolation
Determination of the kind, location and time of detection of a fault.
Follows fault detection.

Fault identification
Determination of the size and time-variant behaviour of a fault. Fol-
lows fault isolation.

Fault diagnosis
Determination of the kind, size, location and time of detection of a
fault. Follows fault detection. Includes fault detection and identifica-
tion.

Monitoring
A continuous real-time task of determining the conditions of a phys-
ical system, by recording information, recognising and indication
anomalies in the behaviour.

Supervision
Monitoring a physical and taking appropriate actions to maintain
the operation in the case of fault.

3. Models

Quantitative model
Use of static and dynamic relations among system variables and pa-
rameters in order to describe a system’s behaviour in quantitative
mathematical terms.

Qualitative model
Use of static and dynamic relations among system variables in or-
der to describe a system’s behaviour in qualitative terms such as
causalities and IF-THEN rules.

Diagnostic model
A set of static or dynamic relations which link specific input variables,
the symptoms, to specific output variables, the faults.

Analytical redundancy
Use of more (not necessarily identical) ways to determine a variable,
where one way uses a mathematical process model in analytical form.
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4. System properties

Reliability
Ability of a system to perform a required function under stated con-
ditions, within a given scope, during a given period of time.

Safety
Ability of a system not to cause danger to persons or equipment or
the environment.

Availability
Probability that a system or equipment will operate satisfactorily
and effectively at any point of time.

5. Tivme dependency of faults

Abrupt fault
Fault modelled as stepwise function. It represents bias in the moni-
tored signal.

Incipient fault
Fault modelled by using ramp signals. It represents drift of the mon-
itored signal.

Intermittent fault
Combination of impulses with different amplitudes.

6. Fault terminology
Additive fault
Influences a variable by an addition of the fault itself. They may
represent, e.g., offsets of sensors.
Multiplicative fault
Are represented by the product of a variable with the fault itself.
They can appear as parameter changes within a process.

1.2 Fault Detection and Identification Methods based
on Analytical Redundancy

A traditional approach to fault diagnosis in the wider application context
is based on hardware or physical redundancy methods which use multiple
sensors, actuators, components to measure and control a particular variable.
Typically, a voting technique is applied to the hardware redundant system to
decide if a fault has occurred and its location among all the redundant system
components. The major problems encountered with hardware redundancy
are the extra equipment and maintenance cost, as well as the additional
space required to accommodate the equipment [Isermann and Ballé, 1997,
Isermann, 1997].

In view of the conflict between reliability and the cost of adding more
hardware, it is possible to use the dissimilar measured values together to



6 1. Introduction

cross-compare each other, rather than replicating each hardware individu-
ally. This is the meaning of analytical or functional redundancy. It exploits
redundant analytical relationships among various measured variables of the
monitored process [Patton et al., 1989, Chen and Patton, 1999].

In the analytical redundancy scheme, the resulting difference generated
from the comparison of different variables is called a residual or symptom
signal. The residual should be zero when the system is in normal operation
and should be different from zero when a fault has occurred. This property
of the residual is used to determine whether or not faults have occurred
[Patton et al., 1989, Chen and Patton, 1999].

Counsistency checking in analytical redundancy is normally achieved
through a comparison between a measured signal with estimated values. The
estimation is generated by a mathematical model of the considered plant. The
comparison is done using the residual quantities which are computed as differ-
ences between the measured signals and the corresponding signals generated
by the mathematical model [Patton et al., 1989, Chen and Patton, 1999].

Figure 1.1 illustrates the concepts of hardware and analytical redundancy.

Redundant o
Sensors ) _
Diagnostic|
Input logic
> Plant > Sensors >
Fault
I_» Output alam
FDI . .
mathematical Dl?gH,OSUC .
> model » logic

Fig. 1.1. Comparison between hardware and analytical redundancy schemes.

In practice, the most frequently used diagnosis method is to monitor the level
(or trend) of the residual and take action when the signal reaches a given
threshold. This method of geometrical analysis, whilst simple to implement,
has a few drawbacks. The most serious is that, in the presence of noise,
input variations and change of operating point of the monitored process,
false alarms are possible.

The major advantage of the model-based approach is that no additional
hardware components are required in order to realize a Fault Detection and
Isolation (FDI) algorithm. A model-based FDI algorithm can be implemented
via software on a process control computer. In many cases, the measure-
ments necessary to control the process are also sufficient for the FDI algo-
rithm so that no additional sensors have to be installed [Patton et al., 1989,
Chen and Patton, 1999, Basseville and Nikiforov, 1993].
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Analytical redundancy makes use of a mathematical model of the system
under investigation and it is therefore often referred to as the model-based
approach to fault diagnosis.

1.3 Model-based Fault Detection Methods

The task consists of the detection of faults on the technical process including
actuators, components and sensors by measuring the available input and out-
put variables u(t) and y(t). The principle of the model-based fault detection
is depicted in Figure 1.2.

Faults
Input 3 | 4 h| Output
> Actuators —> Plant —> Sensors >
u(t) y(t)
> Plant <
model

Q Model-based

Residual fault detection
generator

r(t)

Residuals

Residual
evaluation

i

Fault alarm
Fig. 1.2. Scheme for the model-based fault detection.

Basic process model-based FDI methods have been described
by Patton et al. [Patton et al., 1989], Basseville and Nikiforov
[Basseville and Nikiforov, 1993], Gertler [Gertler, 1998] and Patton et
al. [Chen and Patton, 1999, Patton et al., 2000]:

1. Output observers (OO, estimators, filters);
2. Parity equations;
3. Identification and parameter estimation.

They generate residuals for output variables with fixed parametric models
under method 1, fixed parametric or nonparametric models under method 2
and adaptive nonparametric or parametric models under method 3.
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An important aspect of these methods is the kind of fault to be detected.
As noted above, one can distinguish between additive faults which influence
the variables of the process by a summation and multiplicative faults which
are products of the process variables. The basic methods show different re-
sults, depending on these types of faults.

If only output signals y(¢) can be measured, signal model-based methods
can be applied, e.g. vibrations can be detected, which are related to rotating
machinery or electrical circuits. Typical signal model-based methods of fault
detection are:

1. Bandpass filters;
2. Spectral analysis (FFT);
3. Maximum-entropy estimation.

The characteristic quantities or features from fault detection methods show
stochastic behaviour with mean values and variances. Deviations from the
normal behaviour must then be detected by methods of change detection
(residual analysis, Figure 1.2) like:

1. Mean and variance estimation;
2. Likelihood-ratio test, Bayes decision;
3. Run-sum test.

1.4 Model Uncertainty and Fault Detection

Model-based FDI makes use of mathematical models of the system. How-
ever, a perfectly accurate mathematical model of a physical system is never
available. Usually, the parameters of the system may vary with time and the
characteristics of the disturbances and noises are unknown so that they can-
not be modelled accurately. Hence, there is always a mismatch between the
actual process and its mathematical model even under no fault conditions.
Such discrepancies cause difficulties in FDI applications, in particular, since
they act as sources of false alarms and missed alarms. The effect of modelling
uncertainties, disturbances and noise is therefore the most crucial point in
the model-based FDI concept and the solution to this problem is the key for
its practical applicability [Chen and Patton, 1999].

To overcome these problems, a model-based FDI scheme has to be in-
sensitive to modelling uncertainty. Sometimes, a reduction of the sensitivity
to modelling uncertainty does not solve the problem since the sensitivity
reduction may be associated with a reduction of the sensitivity to faults
[Chen and Patton, 1999, Gertler, 1998]. A more meaningful formulation of
the FDI problem is to increase insensitivity to modelling uncertainty in order
to provide increasing fault sensitivity.

The difficulties introduced by model uncertainties, disturbances and
noises in model-based FDI have been widely considered during the last 10
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years by both academia and industry [Gertler, 1998]. A number of methods
have been proposed to tackle this problem, for example the Unknown Input
Observer (UIO), eigenstructure assignment and parity relation methods.
An important task of the model-based FDI scheme is to be able to di-
agnose incipient faults in a system. With respect to abrupt faults, incipient
faults may have a small effect on residuals and they can be hidden by distur-
bances. On the other hand, hard faults can be detected more easily because
their effects are usually larger than modelling uncertainties and a simple fixed
threshold is usually enough to diagnose their occurrence by residual analysis.
The presence of incipient faults may not necessarily degrade the perfor-
mance of the plant, however, they may indicate that the component should
be replaced before the probability of more serious malfunctions increases.
The successful detection and diagnosis of incipient faults can therefore be
considered a challenge for the design and evaluation of FDI algorithms.

1.5 The Robustness Problem in Fault Detection

In this monograph, observer-based approaches to robust FDI in industrial
dynamic systems are summarised and applied to simulated and real plants.
In the context of automatic control, the term robustness is used to describe
the insensitivity or invariance of the performance of control systems with
respect to disturbances, model-plant mismatches or parameter variations.
Fault diagnosis schemes, on the other hand, must of course also be robust to
the mentioned disturbances, but, in contrast to automatic control systems,
they must not be robust to actual faults. On the contrary, while generating
robustness to disturbances, the designer must maintain or even enhance the
sensitivity of fault diagnosis schemes to faults. Furthermore, the robustness
as well as the sensitivity properties must be independent of the particular
fault and disturbance mode. Generally, the problem of robust FDI can be
divided into the tasks of robust residual generation followed by robust residual
evaluation.

In many cases, the disturbances and model-plant mismatches to which ro-
bustness must be generated, are due to the use of linear models for describing
dynamic behaviour of non-linear processes. In this contribution, modelling
errors are avoided from the very beginning by focusing on robust residual
generation methods using linear and non-linear process models. This in turn
simplifies the problem of residual evaluation without reducing the sensitivity
to actual faults.

Effective tools for robust residual generation and even complete decou-
pling from external disturbances and unknown system parameters can be
provided, e.g., by unknown input observers which are introduced and ap-
plied to industrial processes. It is shown that the proposed solution to the
disturbance de—coupling problem provides, in addition, the solution to both
the fault detection and fault isolation problems.
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On the other hand, many dynamic processes can only be described
effectively using non-linear mathematical models. Most of the existing
observer—based FDI techniques, however, are limited to the use of lin-
ear process models. The methods that can be found in the literature are
based on the assumption that the system under supervision stays, during
normal operation, in a neighbourhood of a certain known operating point
[Chen and Patton, 1999, Patton et al., 2000]

It is clear that, as almost every process system is non-linear, the modelling
errors almost always reduce the accuracy of the linear model and therefore
the performance of the FDI algorithm is compromised. Various methods for
generating robustness to linearisation have been proposed in the literature
and the reader is referred to [Patton et al., 2000, Chap. 7] for a comprehensive
treatment of this subject.

This monograph also surveys the state of the art of robustness methods
and it presents some important ideas concerning the development of the use
of non-linear models and predictors for FDI. In Chapter 4 observer—based
approaches to robust FDI for dynamic systems are considered in more detail.
In this contribution, the available model-based approaches are generalised,
and thus extended to a wider class of dynamic systems.

In order to accommodate the application of robust FDI concepts, dis-
turbances and parameter uncertainties of the monitored plants as well as
faults are modelled in the form of unknown input signals. It is shown that,
provided certain conditions can be met, complete decoupling of the residual
from disturbances as well as from the parameter uncertainties of the process
model can be achieved, whilst the sensitivity of the residual to faults is main-
tained. As the faults are also modelled in the form of external signals, this
method additionally provides tools for the purpose of fault isolation. Fault
isolation requires the de-coupling of the effects of different faults on the resid-
ual [Chen and Patton, 1999] and this, in turn, allows for decisions on which
fault or faults out of a given set of possible faults has actually occurred.

These residual properties must be completely independent of the magni-
tude or frequency of the unknown inputs and the faults. This is crucial, in
cases where no a priori knowledge about these properties is available. For
systems, where the complete decoupling of the remaining unknown inputs
or faults from the residual proves impossible, a threshold selection method,
employing functional analytic methods and appropriate vector and operator
norms can be exploited. This technique provides a tool for the robust evalua-
tion of the residuals which have been generated by unknown input observers.
Using the same functional analysis methods as employed for threshold se-
lection, a performance index can be defined which allows for performance
evaluation and, to a certain degree, also allows for optimal residual generator
design [Patton et al., 2000].
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1.6 System Identification for Robust FDI

In earlier sections of this monograph, we have seen that model-based FDI
methods formally require a high accuracy mathematic model of the mon-
itored system. The better the model is as a representation of the dynamic
behaviour of the system, the better will be the FDI performance. It is difficult
to develop a highly accurate model of a complex system and hence the inter-
esting question is: “what is a reasonable model to enable good performance
in FDI to be guaranteed?”.

It would be attractive to develop a robust FDI technique which is insen-
sitive to modelling uncertainty, i.e., so that a highly accurate mathematical
model is no longer required. However, in order to design a robust FDI scheme,
we should have a description (i.e., some information) about the uncertainty,
e.g., its distribution matriz and spectral bandwidth, etc. Furthermore, this
description should provide assistance for robust FDI design, i.e., it can be
handled in a systematic manner. Chapters 2 and 4 show how a typical un-
certainty description makes use of the concept of “unknown inputs” acting
upon a nominal linear model of the system. These unknown disturbances de-
scribe the uncertainties acting upon the system but disturbance distribution
matrices are assumed known since they can be estimated by identification
schemes.

It is clear that disturbances and faults act on the system in the same
way, and thus we cannot easily discriminate between these excitations un-
less we know the structure of the disturbance distribution matrix. Once the
disturbance distribution matrix is known, we can generate the residual with
the disturbance de-coupling (robust) property, i.e., the residual is de-coupled
from the disturbance (uncertainty). The robust residual can then be used to
achieve reliable FDI.

The theories underlying robust FDI approaches have been very well de-
veloped, but for real applications the following problems remain unsolved:

— estimation of reliable model for the monitored process;

— modelling accuracy of the real uncertainty by means of identified distur-
bance terms when no knowledge of the uncertainty is available;

— estimation of the disturbance terms and the structure of distribution ma-
trices.

This book seeks to answer the above questions. Some simulation and real
examples are given to test some of the theoretical results. These problems
have to be addressed, otherwise the application domain of the disturbance de—
coupling approach for robust FDI is very limited. In fact, few researchers and
contributions have presented the application results of robust fault diagnosis
to real processes.

As mentioned above, a primary requirement for model-based and distur-
bance de-coupling approaches to robust FDI is that both the system model
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and disturbance distribution matrices must be known. It is interesting that,
within the framework of international research on this subject, there have
been few attempts to address the problem by means of the identification ap-
proach. This lack of information has obstructed the application of robust FDI
in real engineering systems. Chapters 3 and 4 present the research develop-
ments surrounding the joint estimation of system and disturbance matrices
in order to solve the robust fault diagnosis problem.

Concerning the identification schemes developed and exploited in Chap-
ters 3, 4 and 5, when all observed variables of a dynamic process are af-
fected by uncertainties, the parameter estimation task can be performed by
the so—called errors—in—variables methods. On the other hand, equation er-
ror methods can be developed in the case of exactly known plant variables
[Simani et al., 2000a]. It is worthwhile noting that less attention has been
paid to errors—in—variables schemes.

Under these considerations, Chapters 3, 4 and 5 present the robust FDI
results concerning the description of monitored plants by means of equation
error and error—in—variables identified models in the presence variable un-
certainties. Moreover, for the examples presented, estimates obtained by the
errors—in—variables approach and equation error estimates are computed and
compared in Chapter 5.

1.7 Fault Identification Methods

If several symptoms change differently for certain faults, a first way of de-
termining them is to use classification methods which indicate changes of
symptom vectors.

Some classification methods are [Patton et al., 1989,
Basseville and Nikiforov, 1993, Gertler, 1998, Babusgka, 1998,
Chen and Patton, 1999):

1. Geometrical distance and probabilistic methods;
2. Artificial neural networks;
3. Fuzzy clustering.

When more information about the relations between symptoms and faults
is available in the form of diagnostic models, methods of reasoning can be
applied. Diagnostic models then exist in the form of symptom—fault causali-
ties, e.g. in the form of symptom-fault tree. The causalities can be expressed
as IF-THEN rules. Then analytical as well as heuristic symptoms (from op-
erators) can be processed. By considering these symptoms as vague facts,
probabilistic or fuzzy set descriptions lead to a unified symptom representa-
tion. By using forward and backward reasoning, probabilities or possibilities
of faults are obtained as a result of diagnosis. Typical approximate reasoning
methods are [Basseville and Nikiforov, 1993, Chen and Patton, 1999]:
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1. Probabilistic reasoning;
2. Possibilistic reasoning with fuzzy logic;
3. Reasoning with artificial neural networks.

This very short consideration shows that many different methods have been
developed during the last 20 years. It is also clear that many combinations
of them are possible.

Based on more than 100 publications during the last 5 years, it can be
stated that parameter estimation and observer-based methods are the most
frequently applied techniques for fault detection, especially for the detection
of sensor and process faults. Nevertheless, the importance of neural network-
based and combined methods for fault detection is steadily growing. In most
applications, fault detection is supported by simple threshold logic or hypoth-
esis testing. Fault isolation is often carried out using classification methods.
For this task, neural networks are being more and more widely used.

The number of applications using non—linear models is growing, while
the trend of using linearised models is diminishing. It seems that analytical
redundancy-based methods have their best application areas in mechanical
systems where the models of the processes are relatively precise. Most non—
linear processes under investigation belong to the group of thermal and fluid
dynamic processes. The field of applications to chemical processes has few
developments, but the number of applications is growing. The favourite linear
process under investigation is the DC motor. In general, the trend is changing
from applications to safety-related processes with many measurements, as in
nuclear reactors or aerospace systems, to applications in common technical
processes with only a few sensors. For diagnosis, classification and rule-based
reasoning methods are the most important and the use of neural network
classification as well as fuzzy logic-based reasoning is growing.

1.8 Report on FDI Applications

Because of the many publications and increasing number of
applications (IFAC  Congress and IFAC Symposia SAFEPRO-
CESS) between 1991-2000, it is of interest to show some trends
[Patton et al., 1989, Basseville and Nikiforov, 1993, Gertler, 1998,
Chen and Patton, 1999, Frank et al., 2000]. Therefore, a literature study
of IFAC FDI-related Conferences is briefly presented in the following.
Contributions taking into account the applications reported in Table 1.1
were considered. The type of faults considered are distinguished according to
Table 1.2. Among all contributions, the fault detection methods were classi-
fied as in Table 1.3. The change detection and fault classification methods
are indicated by Table 1.4. The reasoning strategies for fault diagnosis are
reported in Table 1.5. The contributions considered are summarised in Table
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1.6. The evaluation has been limited to the Fault Detection and Diagnosis
(FDD) of laboratory, pilot and industrial processes.

Table 1.1. FDI applications and number of contributions.

| Application | Number of contributions |
Simulation of real processes 55
Large-scale pilot processes 44
Small-scale laboratory processes 18
Full-scale industrial processes 48

Table 1.2. Fault type and number of contributions.

| Fault type | Number of contributions
Sensor faults 69
Actuator faults 51
Process faults 83
Control loop or controller faults 8

Table 1.3. FDI methods and number of contributions.

| Method type | Number of contributions
Observer 53
Parity space 14
Parameter estimation 51
Frequency spectral analysis 7
Neural networks 9

Table 1.4. Residual evaluation methods and number of contributions.

[ Evaluation method | Number of contributions |

Neural networks 19
Fuzzy logic 5
Bayes classification 4
Hypothesis testing 8

Table 1.6 shows that among mechanical and electrical processes, DC mo-
tor applications are mostly investigated. Parameter estimation and observer-
based methods are used in the majority of applications on these kind of
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Table 1.5. Reasoning strategies and number of contributions.

| Reasoning strategy | Number of contributions |

Rule based 10
Sign directed graph 3
Fault symptom tree 2

Fuzzy logic 6

Table 1.6. Applications of model-based fault detection.

| FDD | Number of contributions
Milling and grinding processes 41
Power plants and thermal processes 46
Fluid dynamic processes 17
Combustion engine and turbines 36
Automotive 8
Inverted pendulum 33
Miscellaneous 42
DC motors 61
Stirred tank reactor 27
Navigation system 25
Nuclear process 10

processes, followed by parity space and combined methods. Thermal and
chemical processes are investigated less frequently.

Table 1.3 shows that parameter estimation and observer-based methods
are used in nearly 70% of all application considered. Neural networks, parity
space and combined methods are significantly less often applied.

More than 50% of sensor faults are detected using observer-based meth-
ods, while parameter estimation and parity space and combined methods
play a less important role. For the detection of actuator faults, observer-
based methods are mostly used, followed by parameter estimation and neural
networks methods.

Parity space and combined methods are rarely applied. In general, there
are fewer applications for actuator faults than for sensor or process faults.
The detection of process faults is mostly carried out with parameter estima-
tion methods. Nearly 50% of all the applications considered use parameter
estimation-based methods for detection of process faults. Observer-based,
parity space and neural networks-based methods are used less often for this
class of faults.

Among all the described processes, linear models have been used much
more than non—linear ones. On processes with non—linear models, observer-
based methods are mostly applied, but parity equations and neural networks
also play an important role. On processes with linear or linearised models,
parameter estimation and observer-based methods are mostly used. Parity
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space and combined methods are also used in several applications, but not
to the same extent as observer-based and parameter estimation methods.

Taking into account the system considered, the number of non—linear pro-
cess applications using non-linear models are decreasing. For linear processes,
no significant change can be stated.

The use of neural networks and combinations seems to be increasing.

Concerning the fault diagnosis methods, in recent years, the field of clas-
sification approaches, especially with neural networks and fuzzy logic has
steadily been growing. Also, rule—based reasoning methods are increasingly
being based on fault diagnosis. A growing application of fuzzy rule-based
reasoning can be stated. Applications using neural networks for classifica-
tion are increasing and the trends are analogous to the increasing number
of non—linear process investigations. Nevertheless, the classification of gener-
ated residuals seems to remain the most important application area for neural
networks.

1.9 Outline of the Book

To detect and isolate faults in a dynamic system, based on the use of
an analytical model, a residual signal has to be used. It is derived from
a comparison between real measurements and the relative estimates (gen-
erated by the model). The modelling uncertainty problem can be tackled
by designing a FDI scheme, whose residuals are insensitive to uncertain-
ties whilst sensitive to faults. On the other hand, a model with satisfac-
tory accuracy can be estimated using identification procedures [Norton, 1986,
Soderstrom and Stoica, 1987, Ljung, 1999].

The aim of the design of a FDI scheme is to reduce the effects of un-
certainties on the residuals and to enhance the effects of faults acting on
the residuals. The main aim of this monograph is to develop a residual gen-
erator for model-based fault diagnosis of a process by means of input and
output signals. An accurate model of the process under investigation will be
estimated using identification procedures from data affected by noises and
acquired from simulated and/or actual plants. The monograph consists of 6
chapters and the main contributions are presented in Chapters 3, 4 and 5.
Chapters are devoted to the particular problem in residual generation and
the are organised as follows.

Chapter 2 reviews the state of the art of the model-based FDI. The FDI
problem is formalised in an uniform framework by presenting the mathe-
matical description and definitions. The fundamental issue of model-based
methods is the generation of residuals using the mathematical model of the
monitored system. By analysing residuals, fault diagnosis can be performed.
Some structures of the residual generator are presented in this Chapter in
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order to give ideas how to implement the residual generation. A residual gen-
erator can be designed for achieving the required diagnosis performances, e.g.
fault isolation and disturbance decoupling.

In order to design the residual generator, some assumptions about the
modelling uncertainties need to be made. The most frequently used hy-
pothesis is that the modelling uncertainty is expressed as a disturbance
term in the system dynamic equation. The disturbance vector is un-
known whilst its distribution matrix can be estimated by using identifi-
cation procedures. Based on this assumption, the disturbance decoupling
residual generator can be design by using unknown input observer meth-
ods [Chen and Patton, 1999, Liu and Patton, 1998].

Chapter 3 demonstrates how to apply dynamic system identification
methods in order to estimate an accurate model of the monitored system.

The FDI methods presented require, in fact, a linear mathematical model
of the process under investigation, either in state space or input-output form.

In particular, since state space descriptions provide general and
mathematically rigorous tools for system modelling, they may be
used in the residual generator design, both for the deterministic case
(UIO and OO) [Chen and Patton, 1999, Frank, 1990, Luenberger, 1979,
Watanabe and Himmelblau, 1982] and the stochastic case (Kalman fil-
ters (KF) and unknown input Kalman filters (UIKF)) [Jazwinski, 1970,
Xie et al., 1994, Xie and Soh, 1994].

In such a manner, the suggested FDI tool does not require any physical
knowledge of the process under observation since the linear models are ob-
tained by means of an identification scheme which exploits equation error
(EE) and errors—in—variables (EIV) models. In this situation, the identifica-
tion technique is based on the rules of the Frisch scheme [Frisch, 1934], tra-
ditionally exploited to analyse economic systems. This approach, modified to
be applied to dynamic system identification [Kalman, 1982b, Kalman, 1990,
Beghelli et al., 1990], gives a reliable model of the plant under investigation,
as well as the variances of the input—output noises affecting the data.

For the non-linear case, piecewise affine and fuzzy models will be used as
prototypes for the identification. In particular, the multiple-model approach,
using several local affine submodels each describing a different operating con-
dition of the process, is exploited.

Chapter 4 aims to define a comprehensive methodology for actuator, pro-
cess component and sensor fault detection. It is based on an output estimation
approach, in conjunction with residual processing schemes, which include a
simple threshold detection, in deterministic case, as well as statistical anal-
ysis when data are affected by noise. The final result consists of a strategy
based on fault diagnosis methods well-known in the literature for generating
redundant residuals.
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In particular, this Chapter studies the approach to residual generation
with the aid of OO, UIO, KF and UIKF. The residual is defined as the
output estimation error, obtained by difference between the measurement of
one output and the relative estimate. This Chapter also presents the design
of such estimators both in the deterministic and stochastic environment.

The diagnosis procedure may be further specialised for actuators, input or
output sensors and process components. In fact, the fault diagnosis of input
sensors and actuators uses a bank of UIO in high signal to noise ratio condi-
tions or a bank of UIKF, otherwise. The i—th UIO or UIKF is designed to be
insensitive to the i—th input of the system. On the other hand, output sensor
and process component faults affecting a single residual can be detected by
means of a OO or a classical KF, driven by a single output and all the inputs
of the system.

Chapter 5 shows how the proposed algorithms can be applied to the FDI of
actuators, process components and input-output sensors of industrial plants.

In particular, the FDI techniques presented in this book have been tested
on time series of data acquired from different simulated and real industrial gas
turbine working in parallel with electrical mains, whose linear mathematical
description is obtained by using identification procedures.

Results from simulation show that minimum detectable faults are per-
fectly compatible with the industrial target of this application.

Chapter 6 summarises the contributions and achievements of the mono-
graph providing some suggestions for possible further research topics as an
extension of this work.

1.10 Summary

Chapter 1 has provided a common terminology in the fault diagnosis frame-
work in order to comment on some developments in the field of fault detection
and diagnosis based on papers selected during the last 10 years.

The structure of the six chapters of this monograph and the main contri-
butions presented have also been outlined briefly.
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2.1 Introduction

The model-based approach to fault detection in dynamic systems has been
receiving more and more attention over the last two decades, in the contexts
of both research and real plant application.

Stemming from this activity, a great variety of methods are found in
current literature, based on the use of mathematical models of the process
under investigation and exploiting modern control theory.

Model-based fault detection methods use residuals which indicate changes
between the process and the model. One general assumption is that the resid-
uals are changed significantly so that a detection is possible. This means that
the residual size after the appearance of a fault is large and long enough to
be detectable.

This chapter provides an overview on the various fault detection methods,
with particular attention to the FDI techniques related to the applications
described in this book.

All the methods considered require that the process can be described by
a mathematical model. As there is almost never an exact agreement between
the model used to represent the process and the process itself, the model—-
reality discrepancy is of primary interest.

Hence, the most important issue in model-based fault detection is con-
cerned with the accuracy of the model describing the behaviour of the mon-
itored system. This issue has become a central research theme over recent
years, as modelling uncertainty arises from the impossibility of obtaining
complete knowledge and understanding of the monitored process.

The main focus of this Chapter is the modelling aspects of the process
whose faults are to be detected and isolated. The Chapter also studies the gen-
eral structure of a controlled system, its possible fault locations and modes.
Residual generation is then identified as an essential problem in model-based
FDI, since, if it is not performed correctly, some fault information could be
lost. A general framework for the residual generation is also recalled.

Residual generators based on different methods, such as state and output
observers, parity relations and parameter estimations, are just special cases
in this general framework. In the following, some commonly used residual
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generation and evaluation methods are discussed and their mathematical
formulation presented.

Finally, the chapter presents and summarises special features and prob-
lems regarding the different methods.

2.2 Model-based FDI Techniques

According to the definitions given in Section 1.1, model-based FDI can be
defined as the detection, isolation and identification of faults on a system by
means of methods which extract features from measured signals and use a
priori information on the process available in term of a mathematical models.

Faults are thus detected by setting fixed or variable thresholds on residual
signals generated from the difference between actual measurements and their
estimates obtained by using the process model.

A number of residuals can be designed with each having sensitivity to
individual faults occurring in different locations of the system. The analysis
of each residual, once the threshold is exceeded, then leads to fault isolation.

Figure 2.1 shows the general and logic block diagram of model-based FDI
system.

It comprises two main stages of residual generation and residual
evaluation. This structure was first suggested by Chow and Willsky in
[Chow and Willsky, 1980] and now is widely accepted by the fault diagno-
sis community.

Input Output
Process >

Y

Measurements

vy
Residual
generation
¢ Residuals
Residual
evaluation

¥ Fault information
Fig. 2.1. Structure of model-based FDI system.

The two main blocks are described as follows:
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1. Residual generation: this block generates residual signals using avail-
able inputs and outputs from the monitored system. This residual (or
fault symptom) should indicate that a fault has occurred. It should nor-
mally be zero or close to zero under no fault condition, whilst distin-
guishably different from zero when a fault occurs. This means that the
residual is characteristically independent of process inputs and outputs,
in ideal conditions. Referring to Figure 2.1, this block is called residual
generation.

2. Residual evaluation: This block examines residuals for the likeli-
hood of faults and a decision rule is then applied to determine if
any faults have occurred. The residual evaluation block, shown in
Figure 2.1, may perform a simple threshold test (geometrical meth-
ods) on the instantaneous values or moving averages of the residuals.
On the other hand, it may consist of statistical methods, e.g., gen-
eralised likelihood ratio testing or sequential probability ratio testing
[Isermann, 1997, Willsky, 1976, Basseville, 1988, Patton et al., 2000].

Most contributions in the field of quantitative model-based FDI focus on
the residual generation problem, since the decision—making problem can be
considered relatively straightforward if residuals are well-designed.

Section 2.3 presents a number of different strategies for solving the quan-
titative residual generation problem.

2.3 Modelling of Faulty Systems

This book is concerned with Multi-Input Single-Output (MISO) and Multi-
Input Multi-Output (MIMO) dynamic systems.

The first step in FDI model-based approach consists of providing a math-
ematical description of the system under investigation which shows all the
possible fault cases, as well.

The detailed scheme for FDI techniques here presented is depicted by
Figure 2.2.

The main components are the Plant under investigation, the Actuators
and Sensors, which can be further sub—divided as input and output sensors,
and finally the Controller.

In the following, the system working conditions will be monitored by
means of its input w(t) and output y(¢) measurements and signals from the
controller wg(t) which are supposed completely available for FDI purposes.
Also, as shown in Figure 2.3, the behaviour of any controller that drives the
system is inherently taken into consideration.

It is worth noting that, when the signals wgr(t) from the controller or
measurements of plant inputs w(t) are not available, the controller plays an
important role in the design of the FDI scheme, as a robust controller may
desensitise faults effects and make diagnosis difficult.
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ur(t u”(t) y (¢
l )> Actuators Plant —()>
Input %‘ Output
Sensors sensors
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Fig. 2.2. Fault diagnosis in a closed-loop system.
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Fig. 2.3. The rearranged fault diagnosis scheme.

Once the actual process inputs and outputs w*(t) and y*(¢) (usually not
available) are measured by the input and output sensors, FDI theory can
be treated as an observation problem of u(t) and y(¢). The monitored sys-
tem considered for FDI purpose can be therefore rearranged as illustrated in
Figure 2.3.

Concerning the occurrence of malfunctions, the location of faults and their
modelling, the system under diagnosis can be separated into the following
different parts which can be affected by faults:

— Actuators,
— Process or system components,
— Input sensors,
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— Output sensors,
— Controller.

With respect to previous work (see, e.g., in the References
[Patton et al., 1989, Gertler, 1998, Patton et al., 2000]), it is necessary
to distinguish between input and output sensors.
Figure 2.3 shows that the input and output signals w*(t) and y*(¢) are
acquired in order to obtain the measurements u(t) and y(t) from the sensors.
This fault scenario can be summarised by the diagram shown in Figure 2.4.

Controller fault
A
I Controller :

£,(0) £

l !

* *(t
Actuators u (t)= Process 'O

£(0) £

A 4

u(t)

Input sensors Output sensors

u(t) y(®) ‘

4

Fig. 2.4. The controlled system and fault topology.

Figure 2.4 also shows the situation where the controller can be affected by
faults, since the monitored process consists of a closed-loop system. However,
because of technological reasons (e.g., the control action is performed by a
digital computer), when the actuator is considered as a part or a component
of the whole controller device, the former can be treated as subsystem where
faults are likelier to occur whilst the latter remains free from faults.

Under these assumptions, as depicted in Figure 2.5 when system is con-
sidered in view of fault location, since input and output measurements are
supposed completely available for FDI purposes, hence the controller be-
haviour in the design of a fault diagnosis scheme can be neglected as well as
the interconnection between control system and the process.
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Fig. 2.5. The monitored system and fault topology.

Under the hypothesis of linearity, process dynamics can be described by
the following discrete—time, time—invariant, linear dynamic system in the
state—space form

{ z(t+1) = Ax(t)+ Bu*(t) (2.1)

y'(t) = Cua(l)

where x(t) € R™ is the system state vector, u*(¢t) € R" is the input signal
vector driven by actuators, and y*(t) € R™ is the real system output vector,
not directly available.

A, B, and C are system matrices with appropriate dimensions obtained
by modelling or identification procedure.

With reference to Figure 2.5, a component fault vector f.(t) affects pro-
cess dynamics as follows:

z(t+1) = Az(t) + Bu™(t) + f.(t) (2.2)

In some cases, component faults come from a change in the system parame-
ters, e.g., a change in entries of the A matrix. For example, a change in the
i-th row and the j-th column of the A matrix, leads to a fault vector f.(t)
described as

fc(t) = IiAa,-jxj (t) (23)

where z;(t) in the j-th element of the vector «(t) and I; is a n-dimensional
vector with all zero except a “1” in the i-th element.

As stated previously, as the actual process output y*(t) is not directly
available, a sensor is used to acquire a measure of the system outputs.

Moreover, generally speaking, a sensor can be also used to measure the
system inputs u*(t) (e.g., for uncontrolled system).

By neglecting sensor dynamics, faults on input and output sensors are
modelled with additive signals, respectively, as

() + Fult)
Y () + Folt) (24)
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—~—~
S~
~—
[l



2.3 Modelling of Faulty Systems 25

where the vectors fu(t) = [fu,(t) - .. fu. )] and £y (t) = [fy. () - .- fy.. B)]F
are chosen to describe a fault situation.

For example, if the sensor outputs are stuck at a fixed value w because
of a malfunction, the measurement vector is w(t) = u and the fault can be
written as f,(t) = —u*(t) + @.

On the other hand, when the sensors are affected by a multiplicative fault
0, the measurements become u(t) = (14 J)u*(t), and the fault vector can be
written as f,(t) = du*(t).

Usually, as shown in the following, fault modes can be described by step
and ramp signals in order to model abrupt and incipient (hard to detect)
faults, representing bias and drift, respectively.

Moreover, for technical reasons, sensor output signals are generally af-
fected by measurement noise. Fault—free sensor signals u(t) and y(t), with
additive noise can be modelled as:

{ u(t) w*(t) + a(t)
y() = y () +9)
in which the sequences @(t) and g(t) are usually described as white, zero—

mean, uncorrelated Gaussian processes.
In this case, taking into account the effects of faults and noise, 2.4 has to
u*(t) +a(t) + fu(t)

be replaced by:
{ u(t)
y(t) y* (1) +9(t) + fy ()

By neglecting the actuator block, Figure 2.6 shows the structure of the mea-
surement process.

(2.5)

(2.6)

w” (t) Plant y ()

Fut llnput Output l 0

w(ty [SEPSOTS sensors

Fig. 2.6. The structure of the plant sensors.

Model descriptions of types of Eqs. 2.1 and 2.5 are also known as Error—In—
Variable (EIV) models [Kalman, 1982b, Kalman, 1990]. They will be briefly
presented in Chapter 3.

With reference to a controlled system, according to Figure 2.5, signals
u*(t) are the actuator response to the command signals ug(t).

A purely algebraic actuator (i.e. with gain equal to 1) can be described
by:
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u™(t) = ug(t) + fa(t) (2.7)

where, similarly to input-output sensor fault situation, f,(f) € R" is the
actuator fault vector.

In general, as shown in Figure 2.5, if the the actuation signals u*(¢) are
assumed to be measurable, by neglecting input and output sensor noises, the
process model with fault can be described by the following system equation:

xz(t+1) = Az(t) + f.(t) + Bu*(t)
y(t) = Cux(t)+ fy(t) (2.8)
u(t) = uw'(t) + fu(?)

On the other hand, Figure 2.7 represents the case where the up signals are
measured only by the input sensors.

Such a configuration represents a critical situation with respect to the
input sensor connection depicted in Figure 2.5.

fal(t) ]16 (t)
urll Actuators v Plant v
Input Output
sensors Fult) fu(®) sensors
u(t) 1 ly(t)

Fig. 2.7. Fault topology with actuator input signal measurement.

In this situation, actuator faults cannot be directly related to the input
measurements w(t) but their effects can only be detected by means of output
signals y(t).

By taking into account also actuator faults f,(t), the description below
is obtained:

x(t+1) = Ax(t)+ f.(t)+ Bf.(t) + Bu*(t)
y(t) = Cz(t) + fy(t) (2.9)
u(t) = u'(t) + fu(?)

Moreover, considering the general case, a system affected by all possible faults
can be described by the the following state—space model:

x(t+1) Ax(t) + Bu*(t) + L1 f(t)
Cx(t) + Lo f(t) (2.10)
t)

ult) = w(t)+ Lo f(

<

—~~
~
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where entries of the vector f(t) = [fL, fi, ft, fi]" € R* correspond to
specific faults.

In practice, it is reasonable to assume that the fault signals are described
by wnknown time functions. The matrices Li, Lo, L3 are known as faulty
entry matrices which describe how the faults enter the system.

The vectors u(t) and y(t) are the available and measurable inputs and
outputs, respectively. Both vectors are supposed known for FDI purpose.

The distribution of the fault in the system depicted in Figure 2.5 can
be described as input—output transfer matrix representation in the following
form:

Y(2) = Gyur (2)u™(2) + Gy (2) f(2) (2.11)

z being the unitary advance operator whilst the transfer matrices G- (2)
and Gy ¢(z) are defined as:

{Gw(z) = C(zI-A)'B (2.12)

G,t(2) = C(zI—A) 'L+ L,

Both the general models for FDI described by Equations 2.10 and 2.11 in
the time and frequency domain, respectively, have been widely accepted
in the fault diagnosis literature [Patton et al., 1989, Patton et al., 2000,
Chen and Patton, 1999, Gertler, 1998].

Under these assumptions, the general model-based FDI problem here
treated can be performed on the basis of the knowledge only of the measured
sequences u(t) and y(t).

Frequency domain descriptions are typically applied when the effects of
faults as well as the disturbances have frequency characteristics which differ
from each other and thus information in the frequency spectra serve as criteria
to distinguish the faults [Ding and Frank, 1990, Massoumnia et al., 1989].

On the other hand, since state—space descriptions provide general and
mathematically rigorous tools for system modelling and robust residual gen-
eration, for both the deterministic (noise free measurements) and the stochas-
tic case (measurements affected by noises), the system matrices A, B and
C, 2.10, in canonical forms can be obtained by multivariable identifica-
tion procedures [Guidorzi, 1975, Norton, 1986, Soderstrom and Stoica, 1987,
Ljung, 1999].

Moreover, in the case of a MIMO system, the choice of state—
space representations in canonical form [Guidorzi, 1975] instead of parity
space methods [Gertler, 1995] may avoid unexpected false alarm problems
[Delmaire et al., 1999].

As shown in Chapter 3, the FDI methods proposed here do not require
any physical knowledge of the processes under observation, since the mathe-
matical description of the monitored system is obtained by means of a system
identification scheme based on Equation Error (EE) and EIV models.
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It is worthy to note how this approach represents a novel point of view of
the model-based fault diagnosis. The new aspect consists of exploiting linear
system identification procedures, presented in Chapter 3, in connection with
the model-based residual generation problem, shown in Chapter 4.

Although most systems to be monitored are actually non-linear, linear
system modelling and identification methods are described here to avoid the
complexities that would otherwise be inevitable when non-linear models are
used.

There is certainly an increasing interest in the use of non—linear meth-
ods (non-linear observers, extended Kalman filters, fuzzy-logic methods, etc).
However, as the feature of system supervision is to monitor the operation and
performance of the system with respect to an expected point of operation, lin-
ear system methods are still very valid. Deviations from expected behaviour
can be used to monitor system performance changes as well as component
malfunctions.

2.4 Residual Generator General Structure

In this section, a review is given on fault detection methods based on process
models and signal models. The basic methods are described briefly whilst their
presentation and application are shown in Chapter 4 and 5, respectively.

The most frequently used FDI methods exploit the a priori knowledge of
characteristics of certain signals. As an example, the spectrum, the dynamic
range of the signal and its variations may be checked.

However, the necessity of a priori information concerning the monitored
signals and the dependence of the signal characteristics on unknown working
conditions of the system under diagnosis are main drawbacks of such a class
of methods.

The most significant contribution in modern model-based approaches is
the introduction of the symptom or residual signals, which depend on faults
and are independent of system operating states.

They represent the inconsistency between the actual system measure-
ments and the corresponding signals of the mathematical model.

The residual generator block introduced in Figure 2.1 can be interpreted
as illustrated in Figure 2.8 [Basseville, 1988].

In the above structure, the auxiliary redundant signal z(t) is generated
by the function Wy (u(:),y(+)) and, together with the measurement y(t), the
symptom signal 7(t) is computed by means of Wy (2(-),y(-)).

In the fault—free case, the following relations are satisfied

W (u(),9())
r(t) = Walz()y()) = o. (2.13)

When a fault occurs in the plant, the residual r(t) will be different from zero.

—N
N
=
|
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Inputs Outputs
u(t) y(t)
> Plant >
Y A
Residuals
—> Wi (u(),y()) > Wa(z(),y() |——>
z(t) r(t)

Fig. 2.8. Residual generator general structure.

The simplest residual generator is depicted in Figure 2.9 and it is obtained
when the system W, is a plant identical model z(t) = Wi (u(:)) or it is
an input—output description for the actual process obtained from system
identification procedure (e.g., an Auto Regressive eXogenous (ARX) model,
see Chapter 3).

In the former case, the measurement y(t) is not required in W, because it
is a system simulator. The signal z(t) represents the simulated output and the
residual is computed as r(t) = z(t) — y(¢). Since it is an open-loop system,
the process simulation may become unstable.

u(t) y(t) 4 Residuals
> Plant >
- yt)

—

Simulator or | 2(t)
L » output estimator

Fig. 2.9. Residual generation via system simulator.

An extension to the model-based residual generation is to replace
Wi (u()) by Wi (u(),y()), i.e. an outputl estimator fed by both system
input and output.

In such a case, function W) generates an estimation of a linear function
of the output Wi (u(-),y(-)) = My(t) whilst function W can be defined as
Wa(2(),y(-)) = W (z(t) — My(t)), W being a weighting matrix.
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Concluding, no matter which type of method is used, the residual gener-
ation process is nothing but a liner mapping whose inputs consist of process
inputs and outputs.

As an example, Figure 2.10 represents a general structure for all residual
generators using the input—output transfer matrix description was presented
by Patton and Chen in [Patton and Chen, 1991a].

System
f(z)
> Gy f(z)
u*(z) Loy y(2)
> G(2) > >
yu
+ _+
—  H(2) Hyz)
r(2) Residual generator

Fig. 2.10. Residual generator general structure.

With reference to Equations 2.11 and 2.12, the residual generator struc-
ture is expressed mathematically by the generalised representation:

r(z) = [ Ho(z) Hy(2) ] [ u'(2) ] = H (2 () + Hy(2)y(2) (214)

where H - (z) and H ,(z) are discrete transfer matrices which can be designed
using stable discrete—time linear systems. The functions u*(z), y(z), r(z) and
f(2) are the Z-transform of the corresponding discrete—time signals.

According to the definition, the residual 7(¢) has to be designed to become
zero for for fault—free case and different from zero in case of failures. This
means that

r(t) = 0 if and only if f(t) =0 (2.15)



2.5 Residual Generation Techniques 31

In order to satisfy the Equation 2.15, the design of the transfer matrices
H - (z) and H,(z) must satisfy to the constraint conditions

H,-(2) + Hy(2)Gyu =0 (2.16)

It is worth noting that different residual generators can be obtained by using
different parametrisations of H,-(z) and H,(z) [Patton and Chen, 1991a,
Chen and Patton, 1999].

After generating the residual, the simplest and most widely used way to
fault detection is achieved by directly comparing residual signal r(¢) or a
residual function J (r(t)) with a fixed threshold € or a threshold function ()
as follows

J(r(t)) <e(t) for f(t)=0
{ J(r(t)) >e(t) for f(t)#0 (2.17)

where f(t) is the general fault vector defined in Equation 2.10. If the residual
exceeds the threshold, a fault may be occurred.

This test works especially well with fixed thresholds ¢ if the process op-
erates approximately in a steady state and it reacts after relatively large
feature, i.e. after either a large sudden or a long-lasting gradually increasing
fault.

On the other hand, adaptive thresholds e(¢) can be exploited which de-
pend on plant operating conditions, for example when £(t) is expressed as a
function of plant inputs [Clark, 1989, Chen and Patton, 1999].

2.5 Residual Generation Techniques
The generation of symptoms is the main issue in model-based fault diagnosis.

A variety of methods are available in literature for residual generation
and this section presents briefly some of the most common methods.

Most of the residual generation techniques are based on both continuous
and discrete system models, however, in this book, the attention is focused
only on discrete—time dynamic linear models.

The following process model-based fault detection schemes will be con-
sidered and summarised [Isermann and Ballé, 1997, Patton et al., 2000]:

1. Fault  detection via parameter estimation [Isermann, 1984,

Isermann and Freyermuth, 1992, Isermann, 1993,
Isermann and Ballé, 1997, Patton et al., 2000].

2. Observer—based approaches [Beard, 1971, Frank, 1993,
Frank and Ding, 1997, Patton and Chen, 1997, Willsky, 1976,

Basseville, 1988],
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3. Parity  vector  (relation)  methods  [Chow and Willsky, 1984,
Gertler and Singer, 1990, Patton and Chen, 1991a,
Gertler and Monajemy, 1993, Delmaire et al., 1999].

2.5.1 Residual Generation via Parameter Estimation

In most practical cases, the process parameters are not known at all, or
they are not known exactly enough. Then, they can be determined with pa-
rameter estimation methods, by measuring input and output signals, wu(t)
and y(t), if the basic structure of the model is known [Isermann, 1997,
Patton et al., 2000].

This approach is based on the assumption that the faults are reflected
in the physical system parameters and the basic idea is that the parame-
ters of the actual process are estimated on-line using well-known parameter
estimations methods.

The results are thus compared with the parameters of the reference model;
obtained initially under fault—free assumptions. Any discrepancy can indicate
that a fault may have occurred.

Now we compare two different approaches for modelling the input—output
behaviour of the monitored systern.

Equation Error Methods. The SISO process discrete—time model of order
n is written in the vector form

y(t) =vle (2.18)
where
OT =[a1...an, bi...b,] (2.19)
is the parameter vector and
T =yt —1)...y(t—n) ult—1)...u(t—n)] (2.20)

the discrete—time data vector.
According to Figure 2.11, for parameter estimation, the equation error
e(t) is introduced

e(t) =y(t) —olO (2.21)
or, if
y(t) _ B(z)
u® = A (2.22)

is the transfer function of the process, the equation error via Z-transformation
becomes
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e(t) = B(z)u(t) — A(z)y(t). (2.23)

in which A(z) and B(z) correspond to the estimates of A(z) and B(z).
The least-squares (LS) estimate

e =[w! v e’y (2.24)
is obtained if the minimisation of the sum of least—squares is computed
J©@) = Y.,*t)=e'e
(2.25)
dJe) _ 0
ae = :

As described in e.g., [Patton et al., 2000, Isermann, 1992], the least—squares
estimate can be also expressed in recursive form (RLS) with respect to the
estimates at the instant ¢, with ¢t =0, 1, 2,---

Ot +1) = Ot) + () [y(t +1) - Tt +1)O(t + 1)] (2.26)
where
1) = gremeapwema POP(E+1)
(2.27)
P(t+1) = [ =) & (t + 1)] P(t).

For improved estimates, filtering methods can be exploited. In particular, as
shown in Section 4.8, when measurements are affected by noise, a Kalman
filter can be used for the parameter estimation [Jazwinski, 1970].

u(t) | B(2) y(t) -
> a0 >
Y Y
B(2) —»?— A(2)
A e A
Parameter
estimator
E

Fig. 2.11. Parameter estimation equation error.
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Output Error Methods. Instead of the equation error computed in Equa-
tion 2.21, the output error

e(t) =y(t) —9(O,1) (2.28)
where 302)

U —Bzuz

M@J)—A@)() (2.29)

is the model output, can also be used, as depicted in Figure 2.12.

u(t) B(z) y(t)

> Az)

e(t)

_>
J B
A(z)
A
C]

Parameter <

estimation

Fig. 2.12. Parameter estimation output error.

Unfortunately, direct calculation of the parameter estimate @ is not possible,
because e(t) is non-linear in the parameters.

Therefore, the loss function 2.28 as Equation 2.21 has to be minimised
by numerical optimisation methods. The computational effort is then much
larger and on-line real-time application is in general impossible. However,
relatively precise parameter estimates may be obtained.

If a fault within the process changes one or several parameters by A®,
the output signal changes for small deviations according to

Ay(t) = o1 (1)A0(t) + ATT (1O (1) + AT (1) AO (1) (2.30)

and the parameter estimator indicates a change A@®.
Generally, the process parameters & depend on physical process coeffi-
cients p (like stiffness, damping factor, resistance, ... )

© = f(p) (2.31)

via non-linear algebraic equations. If the inversion of the relationship
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p=/,"0) (2.32)

exists [Patton et al., 2000, Isermann, 1992], changes Ap of the process coef-
ficients can be calculated. These changes in the coefficients are in many cases
directly related to faults.

Thus, although the knowledge of Ap facilitates the fault diagnosis prob-
lem, it is not necessary for fault detection only. Parameter estimation can
also be applied to non-linear static process models [Isermann, 1993].

2.5.2 Observer-based Approaches

The basic idea behind the observer or filter—based techniques is to estimate
the outputs of the system from the measurements by using either Luenberger
observers in a deterministic setting or Kalman filters in a noisy environment.
The output estimation error (or its weighted value) is therefore used as resid-
ual.

It is worth noting that when an observer is exploited for FDI purpose,
the estimation of the outputs is necessary, whilst the estimation of the state
vector is usually not needed [Chen and Patton, 1999]. Moreover, the advan-
tage of using the observer is the flexibility in the selection of its gains which
leads to a rich variety of FDI schemes [Frank, 1994b, Frank and Ding, 1997,
Chen et al., 1996b, Liu and Patton, 1998].

In order to obtain the structure of a (generalised) observer, the discrete-
time, time-invariant, linear dynamic model for the process under considera-
tion in a state-space form is considered

{w(t+1) = Az(t) + Bu(t) (2.33)

y(t) = Cux(t).

being u(t) € R”, x(t) € R" and y(t) € R™.

Assuming that all matrices A, B and C are perfectly known, an observer
is used to reconstruct the system variables based on the measured inputs and
outputs u(t) and y(t)

{ z(t+1) = Ax(t)+ Bu(t)+ He(t)

e(t) y(t) — Cz(t).

The observer scheme described by Equation 2.34 is depicted in Figure 2.13.
For the state estimation error e,(t), it follows from Equations 2.34 that

e(t) = a(t)—a()
{ er(t+1) = (A— HC)e(t). (2.35)

(2.34)

The state error e, (t) (and the error e(t)) vanishes asymptotically

lim e, (t) =0 (2.36)

t—o00
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ul) | pt+1) = Ax(t) + Bu(l)

Y ylt)  =Cal)
e(t)
H <
z(t)
—> B P » C
&2(t+1)
A

Fig. 2.13. Process and state observer.

if the observer is stable, which can be achieved by proper design of the ob-
server feedback H.

If the process is influenced by disturbance and faults, by comparing Fig-
ure 2.14) and Equations 2.10 it is described by the following system

{ z(t+1)
y(t)

where v(t) is the non—measurable disturbance vector at the input, w(t) the
non-measurable disturbance vector at the output, f(¢) fault signals at the
input and output acting through L; and L,, respectively.

They can represent actuator, process, input and output sensor additive
faults.

Axz(t) + Bu(t) + Qu(t) + L1 f (1)

Cx(t) + Rw(t) + Lo f(t) (2.37)

+
J’_

+

— y(t)
+

Fig. 2.14. MIMO process with faults and noises.
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For the state estimation error, the following equations hold if the disturbances
v(t) =0 and w(t) =0

e.(t+1) = (A— HC)e,(t) + L1 f(t) — HL, £ (t) (2.38)

and the output error e(t) becomes
e(t) = Ce,(t) + La f(t). (2.39)

The vector f(t) represents additive faults because they influence e(t) and
x(t) by a summation.

When sudden and permanent faults f(¢) occur, the state estimation error
will deviate from zero.

e, (t) as well as e(t) show dynamic behaviour which are different for
L, f(t) and Ly f(t). Both e,(t) or e(t) can be taken as residuals.

In particular, the residual e(¢) is the basis for different fault detection
methods based on output estimation.

For the generation of residual with special properties, the design of
the observer feedback matrix H is of interest [Chen and Patton, 1999,
Liu and Patton, 1998].

Limiting conditions are the stability and the sensitivity against distur-
bances v(t) and w(t). If the signals are affected by noise, the Kalman filter
must be used instead of classical observers [Jazwinski, 1970].

If faults appear as changes AA or AB of the parameters, the process
behaviour becomes

z(t+1) = (A+AA)z(t)+ (B + AB)ul(t)
Lo 2 Geto (240
while the state e, (t) and the output estimation e(t) errors
t+1) = (A-HCQC)e,(t) + AAz(t) + ABu(t)
{ ) - Cet). § ’ (2.41)

The changes AA and AB are then multiplicative faults [Isermann, 1997,
Patton et al., 2000].

In this case, the changes in the residuals depend on the parameter changes,
as well as input and state variable changes. Hence, the influence of parameter

changes on the residuals is not as straightforward as in the case of the additive
faults f(t).

The following observer—based fault detection schemes and configura-
tions are briefly summarised and recalled [Isermann, 1997, Willsky, 1976,
Patton et al., 1989, Chen and Patton, 1999, Patton et al., 2000].
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1. Dedicated observers for MIMO processes

— Observer excited by one output: one observer is driven by one sensor
output. The other outputs ¢(t) are reconstructed and compared with
measured outputs y(¢). This allows the detection of single output sen-
sor faults [Clark, 1978].

— Bank of observers, excited by all outputs: several observers are de-
signed for a definite fault signal and detected by hypothesis test
[Willsky, 1976].

— Bank of observers, excited by single outputs: several observers for single
sensors outputs are used. The estimated outputs ¢(t) are compared
with the measured outputs y(¢). This allows the detection of multiple
sensor fault (DOS, Dedicated Observer Scheme) [Clark, 1978].

— Bank of observers, excited by all outputs except one: as before,
but each observer is excited by all outputs except one sensor
output, which is supervised (GOS, Generalised Observer Scheme)
[Wiinnenberg and Frank, 1987, Frank, 1993].

. Fault detection filters for MIMO processes

— The feedback H of the state observer in Equation 2.34 is chosen
so that particular fault signals L, f(¢) change in a definite direction
and fault signals Lo f(t) in a definite plane [Beard, 1971, Jones, 1973,
Speyer, 1999].

With directional residual vectors, the fault isolation problem consists of
determining which of the known fault signature directions the residual
vector lies the closest to. The original form of the “failure detection fil-
ter” was proposed by Beard [Beard, 1971] and Jones [Jones, 1973] to
generate directional residual vectors. Many more straightforward meth-
ods have followed, including methods to achieve “robust fault detection
filter” [Chen et al., 1996b].

The fault (or failure) detection is a class of Luenberger observers with
a specially designed feedback gain matrix. It allows output estimation
errors having directional characteristics associated with some known fault
directions, to be obtained.

These fault detection methods mostly require several measurable out-
put signals and make use of internal analytical redundancy of multi-
variable systems. Recently it was proposed to improve their robust-
ness with respect to process parameter changes and unknown in-
put signals v(t) and w(t) [Patton and Chen, 1994a, Chen et al., 1996b,
Chung and Speyer, 1998, Speyer, 1999].

This can be reached, for example, through filtering the output error of
the observer by

r(t) = Wel(t) (2.42)
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together with a special design of the observer feedback matrix H.

3. Output observers

Another possibility is the use of output observers (or UIO, see Sec-
tion 4.3) in the reconstruction of the output signals, if the estimate of
the state variable &(t) is not of primary interest.
In this context, it is worthy to mention the paper by Chen, Patton and
Zhang [Chen et al., 1996b] concerning the design of output observers for
robust FDI using eigenstructure assignment method.
Through a linear transformation

z(t) = Tx(t) (2.43)

the state—space representation of the observer becomes

2Z(t+1)=Fz(t) + Ju(t) + Gy(t) (2.44)
and the residual is determined by
r(t) = W.z(t) + W,y(t). (2.45)

This situation is depicted in Figure 2.15.

w(t) | pt+1) = Ax(t)+ Bu(t) LA
> y(t) = Cxz(t). "
G < v
Wy
v 2(t) v r(t)
= B (T o W (O
Az(t+1)
F

Fig. 2.15. Process and output observer.

The state estimation error

ea(t) = 2(t) — 2(t) = 2(t) — Tx(?) (2.46)

and the residuals 7(t) are then designed, such that they are independent
of the process states x(t), the known input w(t) and the unknown inputs
v(t) and w(t), as depicted in Figure 2.14.



40 2. Model-based Fault Diagnosis Techniques

In this way, the residuals are dependent only on fault sig-
nals f(¢) [Patton and Chen, 1994a, Chen et al., 1996b, Gertler, 1998,
Patton et al., 2000].

2.5.3 Fault Detection with Parity Equations

The basic idea of the parity relations approach is to provide a proper check
of the parity (consistency) of the measurements acquired from the monitored
system.

In the early development of fault diagnosis, the parity vector (re-
lation) approach was applied to static or parallel redundancy schemes
[Potter and Suman, 1977] which may be obtained directly from measure-
ments (hardware redundancy) or from analytical relations (analytical redun-
dancy). A survey of these methods can be found in [Ray and Luck, 1991].

In the case of hardware redundancy, two methods can be exploited to ob-
tain redundant relations. The first requires the use of several sensors having
identical or similar functions to measure the same variable. The second ap-
proach consists of dissimilar sensors to measure different variables but with
their outputs being relative to each other.

Even if these techniques have been successfully applied for fault diagnosis
[Potter and Suman, 1977, Daly et al., 1979], the attention of this section is
focused on analytical forms of redundancy.

A straightforward model-based method of fault detection is to take a

model G(z) = A and to run it in parallel to the process described by

B(z)
Gp(z) = %, thereby forming an error vector r(z)
Az)  A(z)
r(z) = — = u(z). 2.47
(=) ( B0 B0 ) (2.47)

The methodology here described is depicted in Figure 2.16(a).
However, as for observers, the model parameters and structure of the moni-
tored process have to be known a priori.

With reference to Figure 2.5, if

_ . A(z) _ A(2)
Gu(z) = Gp(z) ie. B = B0 (2.48)
for additive input f,(z) and output f,(z) faults, the (2) error then becomes
A
r(z) = 38 Ful2) + £y 2). (2.49)

According to Figure 2.16(b), another possibility is to generate a polynomial
error
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u(z) A@) y(@)
B(z)

A4
\/

- r(t)

g(z)
B(2)

Y

(a) Output error

u(?) A(2) ()
B

Be) (A

r(¢)

(b) Equation error

Fig. 2.16. Parity equation methods.

r) = AEE) - B)u() (2.50)
B(2)fu(z) + A(2) fy(2).

In both cases, different time responses are obtained for an additive input or

output fault.

Moreover, the error vector r(z) computed by Equation 2.49 corresponds to
the output error of parameter estimation method computed by Equation 2.28.

Oun the other hand, r(z) in Equation 2.50 concerns the equation error of
Equation 2.21.

Equations 2.49 and 2.50 generate residuals and are called parity equa-
tions [Gertler, 1991] under the assumptions of fault occurrence and of exact
agreement between process and model.

However, within the parity equations, the model parameters are assumed
to be known and constant, whereas the parameter estimations can vary the
parameters of A(z) and B(z) in order to minimise the residuals.

Moreover, for the generation of specific characteristics of the parity vector
r(z) and for obtaining fault detection and isolation properties, the residu-
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als can be filtered according to matrix Gy(z) to compute the vector rs(z)
[Gertler, 1991, Patton and Chen, 1994c, Patton et al., 2000]:

ri(2) = G¢(2)r(2). (2.51)
Equations 2.51, 2.49 and 2.50 can be therefore used to implement and design
the residual generation system, in order to meet fault detection and isolation
specifications, as well [Gertler, 1998].

However, for SISO processes only one residual can be generated and it is
therefore not easy to distinguish between different faults.

On the other hand, more freedom in the design of parity equations can
be obtained when for SISO processes intermediate signals can be measured
(see Figure 2.5), or for MIMO systems.

As an extension of the parity equation method, the parity relation concept
presented here can be generalised [Chow and Willsky, 1984, Lou et al., 1986,
Patton and Chen, 1994c] and then extended to state-space descriptions, as
shown in [Gertler, 1998] for discrete-time models.

The redundancy relations are now specified mathematically as follow.

Given the system

{ z(t+1) = Az(t)+ Bu(t) (2.52)

y(t) = Caz(t)
by substituting the second of Equations 2.52 in the first one and delaying
several times, the following system is obtained

y(t) C 0 0 0o ... u(t)
y(t+1) CA CB 0 0 .. u(t +1)
yit+2) | =| ca? |z(t)+ | CAB CB o u(t +2)
(2.53)
Y 5 (t) = Tx(t) + QU s(t). (2.54)

In order to remove the non—measurable states x(¢), and to obtain a parity
vector useful for FDI, Equation 2.53 is multiplied by W, such that

WT =0. (2.55)
This leads to residuals
r(t) = WY — WQUf(t) (2.56)

as shown in Figure 2.17.

The filtered input and output vectors U y and Y ¢ are obtained by delaying
the corresponding signals.

The design of the matrix W gives some freedom to generate a structured
set of residuals.
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One possibility is to select the elements of W such that one measured
variable has no impact on a specific residual. Then, this residual remains
small in the case of an additive fault on this variable, and the other residuals
increase [Patton and Chen, 1994c, Chen and Patton, 1999].

u®  x(er1) = Ax(O+Bu() yooo o
y() = Cx(t)
\ 4 \ 4
Delay line Delay line
+
» WQ —I)j— W

r(t)

Fig. 2.17. Parity equation methods for a MIMO model.

Finally, because of the previous results, it is clear therefore that some
correspondence exists between parity relation and observer—based meth-
ods. This aspect was firstly pointed out by Massoumnia [Massoumnia, 1986]
and later was demonstrated by Frank and Wunnenberg [Wiinnenberg, 1990,
Patton et al., 1989).

The problem was re—examined in detail by Chen and Patton
[Patton and Chen, 1994c] and the equivalence under different conditions and
in different meanings was discussed. It was shown that the parity relation
approach is equivalent to the use of a dead—beat observer.

This implies that the parity relation scheme provides less design flexibility
when compared with methods which are based on observers without any
restriction.

More recently, a comparison between observer—based and parity space
techniques was proposed [Delmaire et al., 1999]. Both the methods were first
explored for SISO systems and therefore extended the comparison to MIMO
systems. The comparison was performed using linear discrete-time models.

In particular, considering MIMO systems described by estimated input—
output discrete-time forms (e.g., ARX or Auto Regressive Moving Average
eXogenous (ARMAX) models) of Equations 2.49 and 2.50 leads to a repre-
sentation in which parameters redundancy can not be avoided. To overcome
this drawback Delmaire et al. proposed in [Delmaire et al., 1999] to use ob-
servers designed from identified canonical state-space forms [Guidorzi, 1975].
Moreover, in the case of parameters redundancy, multiple identification of
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some parameters may occur, leading to inconsistent estimations which might
produce inconsistent FDI decisions [Delmaire et al., 1999].

This states again the FDI capabilities of the observer—based methods with
respect, to parity relation schemes.

2.6 Change Detection and Symptom Evaluation

When the residual generation stage has been performed, the second step
requires the examination of symptoms in order to determine if any faults
have occurred.

As shown by Equation 2.17, a decision process may consist of a simple
threshold test on the instantaneous values of moving averages of residuals.

On the other hand, because of the presence of noise, disturbances and
other unknown signals acting upon the monitored system, the decision mak-
ing process can exploits statistical methods.

In this case, the measured or estimated quantities, such as signals, pa-
rameters, state variables or residuals are usually represented by stochastic
variables r(t) = {r;(¢)}{, with mean value and variance [Willsky, 1976]

i = E{ri(t)}; 67 = E{[ri(t) — 7;]*} (2.57)

as normal values for the fault-free process.
Analytic symptoms are then obtained as changes

Ar; = E{ri(t) — 7 }; Aoy = E{oy(t) — 0} (2.58)

with reference to the normal values. Usually, the time instant ¢ > ¢; repre-
sents the unknown instant of the fault occurrence.

In order to separate normal from faulty behaviour, usually a fixed thresh-
old Ar;,; defined as

Aryy = €5y, €>2 (2.59)

has to be selected.

By a proper choice of €, a compromise has to be made between the detec-
tion of small faults and false alarms.

Another class of methods can be exploited for detecting resid-
ual changes due to faults. Therefore, techniques of change detec-
tion, e.g., as a likelihood-ratio—test or Bayes decision, a run—sum
test are commonly used [Isermann, 1984, Basseville and Benveniste, 1986,
Basseville and Nikiforov, 1993].

Moreover, fuzzy or adaptive thresholds may improve the binary decision
[Chen and Patton, 1999, Patton et al., 2000].

Finally, when several variables change, classification methods are used. In
a multidimensional space, the symptom vector
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Ar =[Ary Ary -+ Arg] (2.60)

belongs to a g—dimensional space and its direction depends on the fault oc-
currence.

In this case, the process of residual evaluation consists of determining
the direction as well as the distance of Ar from the origin. Geometrical
distance methods [Carpenter and Grossberg, 1987, Tou and Gonzalez, 1974]
or artificial neural networks [Himmelblau et al., 1991, Meneganti et al., 1998]
can be hence applied.

The generation and evaluation of analytic symptoms concludes the task
of fault—detection within the framework of model-based fault diagnosis of
Figure 2.8.

2.7 The Residual Generation Problem

Although the analytical redundancy method for residual generation has been
recognised as an effective technique for detecting and isolating faults, the crit-
ical problem of unavoidable modelling uncertainty has not been fully solved.

The main problem regarding the reliability of FDI schemes is the mod-
elling uncertainty which is due, for example, to process noise, parameter
variations and non-linearities.

On the other hand, all model-based methods use a model of the monitored
system to produce the symptom generator. If the system is not complex and
can be described accurately by the mathematical model, FDI is directly per-
formed by using a simple geometrical analysis of residuals. In real industrial
systems however, the modelling uncertainty is unavoidable.

The design of an effective and reliable FDI scheme for resid-
ual generation should take into account of the modelling uncertainty
with respect to the sensitivity of the faults. Therefore, the task of
the design of an FDI system is thus to generate residuals which
are robust [Chow and Willsky, 1984, Ding and Frank, 1990, Frank, 1994b,
Frank and Ding, 1997, Patton and Chen, 1994c].

Several papers addressed this problem. For example, optimal robust parity
relations were proposed [Chow and Willsky, 1984, Chung and Speyer, 1998,
Speyer, 1999, Lou et al., 1986] and the threshold selector concept was intro-
duced [Emami-Naeini et al., 1988]. Robust FDI using the disturbance decou-
pling technique was also used [Patton and Chen, 1994c, Chen et al., 1996b].
The Patton and Chen approach is an interesting contrast to the Chow and
Willsky method which seems to minimise the modelling uncertainty over
several points of operation. Patton and Chen deal directly with this problem
by estimating the optimum unknown input distribution matrix over a range
of operating points and exploiting the eigenstructure assignment approach
[Patton and Chen, 1994¢, Chen and Patton, 1999].
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The model-based FDI technique requires a high accuracy mathematical
description of the monitored system. The better the model represents the
dynamic behaviour of the system, the better will be the FDI precision. If a
FDI method can be developed which is insensitive to modelling uncertainty,
a very accurate model is not necessarily needed.

All uncertainties can be are summarised as disturbances acting on the
system. Although the disturbance vector is unknown, its distribution matrix
can be obtained by an identification procedure. Under this assumption, the
“disturbance de—coupling” principle can be exploited to design a robust FDI
scheme.

In order to summarise the approach to the robustness problem,
the state—space model of the monitored system should be considered
[Patton and Chen, 1993]:

(A+ AA)z(t) + (B + AB) u(t) + E1e(t) + Ry f(t)

x(t+1)
{ Cz(t) + Exe(t) + Ro2f(t)

y(t)

(2.61)
where e(t) is the disturbance vector, and E; and E» are the known or un-
known input distribution matrices. The matrices AA and AB are the pa-
rameter errors or variations which represent modelling errors.

The discrete transfer matrix description between the output y(t) and
input w(t) of the system 2.61 is then

Y(2) = (Gu(z) + AGu(2)) u(2) + G=(2)e(2) + G;(2) f(2) (2.62)

where AG,,(z) is used to describe modelling errors, whilst both AG,,(z) and
G (z) represent modelling uncertainty.

With reference to the residual generator of Figure 2.10 and described by
Equation 2.14, the z—domain residual vector has to be rewritten as

r(z) = Hy(2)Gf(2)f(2) + Hy(2)G:(2)e(2) + Hy(2)AG.(2)u(z). (2.63)

With respect to Equation 2.14, the terms H,(2)G:(z) and H,(2)AG,(z)
cannot be deleted.

Both faults and modelling uncertainty (disturbance and modelling error)
affect the residual and hence discrimination between these two effects is dif-
ficult.

The principle of disturbance de—coupling for robust residual generation
requires that the residual generator satisfies

H,(2)G.(z) =0 (2.64)

in order to achieve total de—coupling between residual r(z) and disturbance

e(z).
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This property can be achieved by using the unknown input ob-
server [Watanabe and Himmelblau, 1982, Wiinnenberg and Frank, 1987,
Chen et al., 1996b, Frank et al., 2000], optimal (robust) parity rela-
tions  [Chow and Willsky, 1984, Lou et al., 1986, Wiinnenberg, 1990,
Wiinnenberg and Frank, 1990, Frank et al., 2000] or alternatively
the eigenstructure assignment, approach [Patton et al., 1986,
Patton and Chen, 1991b, Liu and Patton, 1998, Patton and Chen, 2000,
Duan et al., 2002].

These approaches are presented in detail in Chapter 4 where the design
of a robust residual generator is also achieved in connection with different
identification tools summarised in Chapter 3.

Hence, for disturbance de—coupling approaches in FDI, the aim is to
completely eliminate the disturbance effect from the residual. However,
the complete elimination of disturbance effects may not be possible due
to the lack of degree of freedom. Moreover, it may be problematic, in
some cases, because the fault effect may also be eliminated. Hence, an
appropriate criterion for robust residual design should take into account
the effects of both modelling error and faults. There is a trade—off be-
tween sensitivity to faults and robustness to modelling uncertainty and
hence robust residual generation can be considered as a multi-objective
optimisation problem [Chen and Patton, 1999, chapt. 6]. It consists of the
maximisation of fault effects and the minimisation of uncertainty effects
[Wiinnenberg, 1990, Frank et al., 2000].

Therefore, the approach to the design of optimal residuals can require the
satisfaction of a set of objectives. These objectives are essential for achiev-
ing robust diagnosis of incipient faults. If such joint optimisation problems,
which can be also expressed in the frequency domain, were reformulated
for satisfying a set of inequalities on the performance indices, Genetic Al-
gorithms (GA) [Goldberg, 1989, Davis, 1991] and Linear Matrix Inequalities
(LMI) [Boyd et al., 1994] can be successfully exploited to search the opti-
mal solution [Chen et al., 1996a, Hou and Patton, 1997, Chen et al., 1997],
[Chen and Patton, 1999, Chen and Patton, 2001].

Disturbance de—coupling can also be achieved using frequency do-
main design techniques. As an example, the robust fault detection prob-
lem can be managed by using the standard H,, filtering formulation
[Ding and Frank, 1990, Hou and Patton, 1996, Frank and Ding, 1997].

With this method, the minimisation of the disturbance effect
on the residual is formulated as a standard H., filtering problem
[Chen and Patton, 2000, Frank et al., 2000]. On the other hand, the so—
called Ho/H_ approach can be also exploited [Hou and Patton, 1996,
Hou and Patton, 1997, Frank et al., 2000, Chen and Patton, 2000].

Among the many ways for eliminating or minimising disturbance and
modelling error effects on the residual and hence for achieving robustness in
FDI [Patton et al., 2000] Ho, optimisation is a robust design method with the
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original motivation firmly rooted in the consideration of various uncertain-
ties, especially the modelling errors. It is reasonable to seek an application of
this technique in the robust design of FDI systems. Therefore, the H, opti-
misation method can be successfully exploited for robust residual generation
of FDI.

The early work of using H., optimisation techniques for robust FDI
was based on the use of factorisation approach [Ding and Frank, 1990,
Ding et al., 2000]. The factorisation—based H, optimisation technique is use-
ful in solving FDI problems. However, the more elegant and advanced H,
optimisation methods are based on the use of the Algebraic Riccati Equa-
tion (ARE) [Zhou et al., 1996]. Mangoubi et al. [Mangoubi et al., 1992] first
solved the robust FDI estimation problem using the ARE approach via the
use of H,, and p robust estimator synthesis methods developed by Ap-
pleby et al. [Appleby et al., 1991]. A direct formulation of the FDI prob-
lem as a robust H. filter design problem with the solution of an ARE was
given in Edelmayer et al. [Edelmayer et al., 1997]. To deal with modelling
errors as well as disturbances in robust FDI design, Niemann and Stoustrup
[Niemann and Stoustrup, 1996] introduced modelling error blocks into the
standard H,, observer design. The weighting factors are then introduced
in the problem formulation for finding an optimal FDI solution. This is
further extended to non-linear systems where the non-linearity is treated
in the same way as a modelling error block [Stoustrup and Niemann, 1998,
Stoustrup et al., 1997].

The majority of studies discussed so far involve the use of a slightly mod-
ified H,, filter for the residual generation, i.e. the design objective is to
minimise the effect of disturbances and modelling errors on the estimation
error and subsequently on the residual. However, robust residual generation is
different from the robust estimation because it does not only require the dis-
turbance attenuation. The residual has to remain sensitive to faults whilst the
effect of disturbance is minimised. Sauter et at. [Sauter et al., 1997] studied
this problem where the fault sensitivity is enhanced by applying an optimal
post—filter to the “primary residual”. The problem of enhancing fault sensi-
tivity while increasing robustness against disturbances and modelling errors
was studied extensively by Sadrnia et at. [Sadrnia et al., 1997]. The essential
idea is to reach an acceptable compromise between disturbance robustness
and fault sensitivity. In the beginning, an observer with very small distur-
bance sensitivity bound is designed via an ARE. Then, the fault sensitivity
is checked. If the fault sensitivity is too small, the disturbance robustness
requirement should be relaxed, i.e. to design another optimal observer with
an increased disturbance sensitivity bound. This procedure is likely to be
repeated several times. The final goal is to find a design which provides the
maximum ratio between fault sensitivity and disturbance sensitivity.

Recently, Chen and Patton [Chen and Patton, 1999,
Chen and Patton, 2000] have formulated the robust residual generation
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problem within the standard H., filtering framework, i.e. to generate
the residual whose sensitivity to disturbances is minimised. To facilitate
reliable FDI, the residual sensitivity to faults has to be maintained (or
maximised) in addition to the minimisation of the disturbance sensi-
tivity. This problem was solved via the minimisation of the difference
between the residual and the fault against the disturbance and the
fault, i.e. the objective is to replicate the fault using the residual. In
this way, the residual sensitivity to the fault is indirectly maximised.
The residual sensitivity to the modelling error can be minimised if the
modelling error is approximately represented by the disturbance vector
with the estimated distribution matrix [Chen and Patton, 1999]. How-
ever, the modelling error can be handled directly using standard H,. In
[Chen and Patton, 1999, Chen and Patton, 2000] the way of including the
modelling error in the robust residual design within the standard H
framework was shown.

Generally speaking, the robust FDI approach can be approached in
different ways. It is therefore important to mention the design principle
of residual generators under a certain performance index [Basseville, 1997,
Frank et al., 2000]. This is indeed a reasonable extension of the unknown
input residual generator design, in which, instead of full de—coupling, a com-
promise between the robustness and sensitivity is made.

It is worth focusing the attention to this scheme, due to its important
role in theoretical studies and its relationship to the residual evaluation and
integrated design of FDI systems. Since the goal of residual generation is
to enhance the robustness of the residual to the model uncertainty without
loss of its sensitivity to the faults, the minimisation of performance index
[Frank et al., 2000]

_ Nzl
12
is widely recognised as a suitable design objective. Associated to the
norm used, the type of the residual generator and the mathematical
tool adopted, a number of optimisation approaches have been developed
[Frank et al., 2000]. Recently, [Ding et al., 2000] derived a unified solution
for a number of optimisation problems and provided thus a satisfactory so-
lution to the above—defined optimisation problem ten years after it was first
proposed. In [Frank et al., 2000] a briefly review the state of art of the so-
lutions can be found whilst [Hou and Patton, 1996, Hou and Patton, 1997,
Frank et al., 2000] address the Hu,/H_ method.

According to the norm selected, by minimising the performance index 2.65
over a specified range, an approximate de—coupling design can be achieved
[Ding and Frank, 1990, Patton and Hou, 1997, Frank and Ding, 1997,
Ding et al., 1999].

or . or
or J = |]%|| with HWH >« (2.65)
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Moreover, the approximated design for optimal disturbance de—coupling
can also be solved in the time domain [Winnenberg, 1990, Chen et al., 1993].

On the other hand, with reference to the modelling errors in Equa-
tion 2.63, represented by the term AG,(z) the robust problem is more diffi-
cult to solve.

Two main techniques have been described by Patton and Chen. In the
first case, the uncertainty is taken into account at the residual design stage
[Chen et al., 1996b]; this is known as active robustness in fault diagnosis
[Patton and Chen, 1994c|.

The active way of achieving a robust solution is to approximate un-
certainties, i¢.e. representing approximately modelling errors as disturbances
[Chen and Patton, 1999]

AG(2)u(z) ~ Gq(z)d(2) (2.66)

where d(z) is an unknown vector and G4(z) is an estimated transfer func-
tion. When this approximate structure is exploited to design disturbance de—
coupling residual generators, robust FDI can be achieved. This disturbance
approximation technique will be presented in Section 4.7.

The second approach called passive robustness makes use of a residual
evaluator with adaptive threshold. As a simple example, it is assumed that
the residual generation uncertainty 2.63 is only represented by modelling
errors.

The fault—free residual r(z) is

r(z) = Hy(2)AG,(2)u(z). (2.67)

Under the assumption that the modelling errors are bounded by a value 0,
such that

| AG . (w) [|< 6 (2.68)

an adaptive threshold (¢) can be generated by a linear system

e(t) = 6H ,(2)u(z) (2.69)

In such case, the threshold e(¢) is no longer fixed but depend on the input
u(t), thus being adaptive to the system operating point. A fault is then
detected if

[ (@) [I>][ @) I (2.70)

A robust FDI technique with the threshold adaptor or selector
is therefore briefly recalled [Clark, 1989], [Emami-Naeini et al., 1988],
[Ding and Frank, 1991]. This method represents a passive approach since no
effort is made to design a robust residual.
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Even if disturbance de—coupling methods for robust FDI has been studied
extensively, their effectiveness regarding real problems has not been fully
demonstrated.

The main difficulty arises as most of the disturbance only account for a
small percentage of the uncertainty in the real system. The presented dis-
turbance decoupling methods cannot be directly applied to the systems with
other uncertainties such as modelling errors.

The estimation and approximate representation of modelling errors as
well as other uncertain factors as the disturbance term provides a practical
way to tackle the robustness issue for real plants.

Chapter 4 provides a study of a different approach for representing mod-
elling errors and other uncertain factors via the disturbance term with an
estimated distribution matrix. As presented in Chapter 3, this identified dis-
tribution matrix will be used for the design of the disturbance de—coupled
residual in order to solve the robust FDI problem.

2.8 Fault Diagnosis Technique Integration

Several FDI techniques have been developed and their application shows dif-
ferent properties with respect of the diagnosis of different faults in a process.
In order to achieve a reliable FDI technique, a good solution consists of a
proper integration of several methods which take advantages of the different
procedures [Isermann, 1994a, Isermann and Ballé, 1997].

Furthermore, a comprehensive approach to fault diagnosis should exploit
a knowledge—based treatment of all available analytical and heuristic infor-
mation. This successful approach can be performed by an integrated method
to knowledge—based fault diagnosis.

2.8.1 Fuzzy Logic for Residual Generation

As stated in Section 2.2, model-based FDI consists of two stages, residual
generation and decision making.

The first block is exploited to generate residuals by means of the available
inputs and outputs from the monitored system.

For the first step, classical fault diagnosis model-based methods can ex-
ploit state—space of input—output dynamic models of the process under in-
vestigation. Within this framework, faults are supposed to appear as changes
on the system state or output caused by malfunctions of the components as
well as of the sensors. Such fault indices are often monitored using estimation
techniques.

The main problem with these techniques is that the precision of the pro-
cess model affects the accuracy of the detection and isolation system as well
as the diagnostic sensibility.
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On the other hand, the majority of real industrial processes are non—linear
[Chen and Patton, 1999, Gertler, 1998, Patton and Chen, 1997] and cannot
be modelled by using a single model for all operating conditions.

Since a mathematical model is a description of system behaviour, accu-
rate modelling for a complex non-linear system is very difficult to achieve
in practice. Sometimes for some non-linear systems, it can be impossible
to describe them by analytical equations. Moreover, sometimes the system
structure or parameters are not precisely known and if diagnosis has to be
based primarily on heuristic information, no qualitative model can be set up

Because of these assumptions, fuzzy system theory seems to be a natural
tool to handle complicated and uncertain conditions [Babugka, 1998].

Instead of exploiting complicated non-linear models obtained by mod-
elling techniques, it is also possible to describe the plant by a collection
of local affine fuzzy and non—fuzzy models [Leontaritis and Billings, 1985a,
Leontaritis and Billings, 1985b, Takagi and Sugeno, 1985], whose parameters
are obtained by identification procedures.

The second stage of model-based FDI consists of a logic decision pro-
cess that transforms residual signal information (quantitative knowledge) into
qualitative statements (faulty or normal working conditions). Therefore, the
problem of decision—making can be treated in a novel way by means of fuzzy
logic.

As noise contamination and uncertainty affect the residuals even in fault—
free conditions, so that they fluctuate and become unequal to zero. This
common situation, which may hide the fault effects, can be handled by means
of the fuzzy logic framework.

The interesting feature of fuzzy logic is that it represents a powerful tool
for describing vague and imprecise fact and is therefore suited for applications
where complete information about fault and system is not available to the
designer.

Even if much effort has been spent on trying to decrease the uncertainty
associated with quantitative residual generation, it is impossible to fully elim-
inate the effect of uncertainty. On the basis of this limitation, the residual
evaluation problem consists of making the correct decision with respect to
uncertain information. Fuzzy logic can be a suitable tool for this task. For
instance, a lot of processes can be managed by humans heuristically since
an analytical description is impossible to use. Fuzzy logic can express expert
knowledge in the form of a rule-based knowledge format.

The introduction of fuzzy logic can improve the decision making in or-
der to provide reliable FDI methods which are applicable for real industrial
systems.

As an example, fuzzy logic can be exploited for residual evaluation
mainly in the decision making stage for releasing the final yes—no decision
[Ulieru and Isermann, 1993, Frank, 1994a, Meneganti et al., 1998].
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Rule-based expert systems have therefore been investigated
very intensively for fault detection and diagnosis  problems
[Rich and Venkatasubramanian, 1987, Kramer, 1987, Patton et al., 1989,
Patton et al., 2000]. Fault diagnosis using rule-based system needs a
database of rules and the accuracy of diagnosis depend on the rules.
Moreover, creating a rich and detailed database of rules is usually a
time-consuming task and many process experts are needed.

It should finally be pointed out how the fuzzy approach in FDI can solve
the problem at two levels: first, fuzzy descriptions are used to generate symp-
toms and then, the fault detection and isolation is achieved using again fuzzy
logic [Dexter and Benouarets, 1997, Isermann, 1998].

2.8.2 Neural Networks in Fault Diagnosis

Quantitative model-based fault diagnosis generates symptoms on the basis
of the analytical knowledge of the process under investigation. In most cases
however, this does not provide enough information to perform an efficient
FDI, i.e., to indicate the location and the mode of the fault.

A typical integrated fault diagnosis system uses both analytical and
heuristic knowledge of the monitored system. The knowledge can be pro-
cessed in terms of residual generation (analytical knowledge) and feature
extraction (heuristic knowledge). The processed knowledge is then provided
to an inference mechanism which can comprise residual evaluation, symptom
observation and pattern recognition.

In particular, when the process model is only known to a certain extent
of precision, pattern recognition method can provide a convenient approach
to solve the fault identification problem, i.e. to determine the size of the fault
[Himmelblau, 1978, Pau, 1981].

In recent years, neural networks (NN) have been used successfully in pat-
tern recognition as well as system identification, and they have been proposed
as a possible technique for fault diagnosis, too.

NN can handle non-linear behaviour and partially known process because
they learn the diagnostic requirements by means of the information of the
training data.

NN are noise tolerant and their ability to generalise the knowl-
edge as well as to adapt during use are extremely interest-
ing properties [Hoskins and Himmelblau, 1988, Dietz et al., 1989,
Venkatasubramanian and Chan, 1989, McDuff and Simpson, 1990,
Chen et al., 1990a]. Some example processes were considered in which
FDI was performed by a NN using input and output measurements. In these
works the NN is trained to identify the fault from measurement patterns,
however the classification of individual measurement pattern is not always
unique in dynamic situations, therefore the straightforward use of NN in
fault diagnosis of dynamic plant is not practical and other approaches should
be investigated.
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A NN could be exploited in order to find a dynamic model of the moni-
tored system or connections from faults to residuals. In the latter case, the
NN is used as pattern classifier or non-linear function approximator. In fact,
artificial neural networks are capable of approximating a large class of func-
tions, for fault diagnosis of an industrial plant.

Under these considerations, in Chapter 4, the identification of fuzzy and
non—fuzzy models for the system under diagnosis as well as the application
of NN as function approximator will be shown.

Quantitative and qualitative approaches have a lot of complementary
characteristics which can be suitably combined together to exploit their ad-
vantages and to increase the robustness of quantitative techniques. The sug-
gested combination can also minimise the disadvantages of the two proce-
dures; in particular, it is important that partial knowledge deriving from
qualitative reasoning is reduced by quantitative methods. Hence, the main
aim of further research on model-based fault diagnosis consists of finding the
way to properly combine these two approaches together to provide highly
reliable diagnostic information.

2.8.3 Neuro-fuzzy Approaches to FDI

Identification of multivariable processes can be interpreted as a problem of
approximation to an input-output mapping. The mathematical model used
in traditional methods is sensitive to modelling errors, parameter variation,
noise and disturbance [Chen and Patton, 1999, Patton et al., 2000]. Process
modelling has limitations, especially when the system is complex and uncer-
tain and the data are ambiguous and not information rich.

As previously stated, NN are known to approximate any non—linear even
dynamic function, given suitable weighting factors and architecture. More-
over, on-line training makes it possible to change the FDI system easily in
cases where changes are made in the physical process or the control system.
NN can generalise when presented with inputs not appearing in the training
data and make intelligent decisions in cases of noisy or corrupted data. They
are also readily applicable to multivariable systems and have a highly parallel
structure, which is expected to achieve a higher degree of fault tolerance. A
NN can operate simultaneously on qualitative and quantitative data. NN can
be very useful when no mathematical model of the system is available, i.e.
analytical models cannot be applied. 152

Almost all the physical processes are dynamic in nature. Combining dy-
namic elements such as filters and delays yield a powerful modelling tech-
nique. But the NN operates as a “black box” with no qualitative/quantitative
information available of the model it represents. Usually, engineers and oper-
ators want to visualise how the system is working and what rules govern its
operation. There is also ambiguity about the performance of the NN in case
of unexpected situation [Korbicz et al., 1999].
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Fuzzy logic systems, on the other hand, have the ability to mimic the
sensing, generalising, processing, operating and learning abilities of a human
operator. They offer a linguistic model of the system dynamics which can be
easily understood by certain rules. They also have inherent abilities to deal
with imprecise or noisy data.

Fuzzy logic can be used with neural networks [Chiang et al., 2001, chapt.
12]. A fuzzy neuron has the same basic structure as the artificial neuron,
except that some or all of its components and parameters may be described
through fuzzy logic. A fuzzy neural network is built on fuzzy neurons or on
standard neurons but dealing with fuzzy data. A fuzzy neural network is
a connectionist model for the implementation and inference of fuzzy rules.
There are many different ways to fuzzify an artificial neuron, which results
in a variety of fuzzy neurons and fuzzy networks [Chiang et al., 2001, chapt.
12], [Nelles, 2001].

Different neuro—fuzzy structures can be therefore designed to combine
the advantages of both neural networks and fuzzy logic [Patton et al., 1999b,
Calado et al., 2001]. These structures have been successfully applied to a wide
range of applications from industrial processes to financial systems, because
of the ease of rule base design, linguistic modelling, application to complex
and uncertain systems, inherent non-linear nature, learning abilities, parallel
processing and fault—tolerance abilities [Wu and Harris, 1996, Ayoubi, 1995].
However, successful implementation depends heavily on prior knowledge of
the system and the training data. There are three common methods of com-
bining neural networks with the fuzzy logic.

1. Fuzzification of the inputs or outputs of the neural networks.

2. Fuzzification of the interconnections of conventional neural networks.

3. Using neural networks in fuzzy models where neurons provide the neces-
sary membership functions and rule base.

All of the Neuro—fuzzy (NF) modelling structures combine, in a sin-
gle framework, both numerical and symbolic knowledge about the pro-
cess. Automatic linguistic rule extraction is a useful aspect of NF espe-
cially when little or no prior knowledge about the process is available
[Brown and Harris, 1994a, Jang and Sur, 1995]. For example, a NF model
of a non-linear dynamical system can be identified from the empirical data.
This modelling approach can give us some insight about the non-linearity
and dynamical properties of the system.

The most common NF systems are based on two types of
fuzzy models TSK [Takagi and Sugeno, 1985, Sugeno and Kang, 1988] and
[Mamdani, 1976, Mamdani and Assilian, 1995] combined with NN learning
algorithms. TSK models use local linear models in the consequents, which
are easier to interpret and can be used for control and fault diagnosis
[Fissel et al., 1997, Isermann and Ballé, 1997]. Mamdani models use fuzzy
sets or rules as consequents and therefore give a more qualitative description.



56 2. Model-based Fault Diagnosis Techniques

The B-spline neural network (with triangular basis functions) is the simplest
of all of the Mamdani NF structures, but the large consequent rule set means
that the method is not easy to use due to low transparency.

Many neuro—fuzzy structures have been successfully applied to a wide
range of applications from industrial processes to financial systems, because
of the ease of rule base design, linguistic modelling, application to complex
and uncertain systems, inherent non-linear nature, learning abilities, parallel
processing and fault-tolerance abilities. However, successful implementation
depends heavily on prior knowledge of the system and the empirical data
[Ayoubi, 1995].

NF networks by their intrinsic nature can handle a limited number of
inputs and can usually be identified in a not very transparent way from the
empirical data. Transparency corresponds here to a more meaningful descrip-
tion of the process i.e. less rules with appropriate membership functions. In
ANFIS [Jang, 1993, Jang and Sur, 1995] a fixed structure with grid partition
is used. Antecedent and consequent parameters are identified by a combina-
tion of least-squares estimates and gradient based methods, the so—called
called hybrid learning rule. This method is fast and easy to implement for
low dimensional input spaces. It is more prone to losing the transparency
and the local model accuracy because of the use of error back-propagation
that is a global and not locally non-linear optimisation procedure. One pos-
sible method to overcome this problem can be to find the antecedents and
rules separately e.g. clustering and constrain the antecedents, and then apply
optimisation.

Hierarchical NF networks can be used to overcome the dimensionality
problem by decomposing the system into a series of MISO and/or SISO sys-
tems called hierarchical systems [Tachibana and Furuhashi, 1994]. The local
rules use subsets of input spaces and are activated by higher level rules.

The criteria on which to build a NF model are based on the requirements
for fault diagnosis and the system characteristics. The function of the NF
model in the FDI scheme is also important i.e. pre—processing data, identifi-
cation (residual generation) or classification (decision making/fault isolation).
For example, a NF model with high approximation capability and disturbance
rejection is needed for identification so that the residuals are more accurate.
Whereas, in the classification stage, a NF network with more transparency
is required.

2.8.4 Structure Identification of NF Models

For complexity reduction and transparency, structure identification methods
can be applied to find appropriate input partition, rules and membership
functions (MFs). Methods like Evolutionary Algorithms (EA), Classification
and Regression Trees CART [Jang, 1994], Clustering and unsupervised NN
(e.g. like the Kohonen feature maps) can be used. Once the structure is deter-
mined i.e. the rules and input membership functions, the consequent param-
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eters can be identified by optimisation techniques like Least—Squares Estima-
tion. The Product Space Clustering approach can be used [Babuska, 1998]
for structure identification of TSK and Mamdani fuzzy models. For a MISO
non-linear dynamic system with p inputs, the Product Space X x Y C P!
is divided in subspaces in which linear models can approximate the non—
linear system. The locally linear model tree LOLIMOT algorithm developed
by Nelles and Isermann [Nelles and Isermann, 1996] can be used to identify
a TSK fuzzy model with dynamic linear models as consequent. When using
such structure identification techniques, a major issue is the sensitivity to
uneven distribution of data. For example in most clustering algorithms, more
clusters are created in regions with more data. A possible solution to this is
problem may be to initialise the algorithm with large number of clusters.

Transparency of the NF models can be enhanced by tuning rules and MFs
[Babuska, 1998]. This type of method is referred to as structure simplifica-
tion/optimisation techniques. To find the optimal number of rules, different
cluster validity measures and methods like Compatible Cluster Merging CCM
[Krishnapuram and Freg, 1992] can be used. At the NF model level the rules
are further simplified by merging similar fuzzy sets and removing fuzzy sets
similar to the universal set. Setnes et al., [Setnes and Kaymak, 1998] used a
supervised fuzzy clustering algorithm that uses input—output data, orthogo-
nal techniques and tuning for complexity reduction.

2.8.5 NF Residual Generation Scheme for FDI

Fig. 2.18 describes a FDI scheme in which several NF models are constructed
to identify the faulty and the fault—free behaviour of the system.

ri(t) = f(u(t),...,ult—n),y@),....,yt—n)), i=1,...,m  (2.71)

Each residual r;(¢) in 2.71 is ideally sensitive to one particular fault in the
system. In practice however, as a consequence of noise and disturbances,
residuals are sensitive to more than one fault.

To take into account the sensitivity of residuals to various faults and noise
we apply a NF classifier. A linguistic style (Mamdani) NF network is used
which processes the residuals to indicate the fault.

This NF model is constructed with following set of rules:

If ry is small ...7; is large rp, is small then fault, is large (2.72)

Fuzzy threshold evaluation in Equation 2.73 is employed to take into account
the imprecision of the residual generator at different regions in the input
space
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Fig. 2.18. Neuro—fuzzy based FDI scheme.

> ie1 Mi(u)
where C' is the total number of I/P regions with different sensitivity to faults
and a multidimensional fuzzy set 7; defines the fuzzy boundary of i—th such
region. This approach depends heavily on the availability of the faulty and
fault—free data and it is more difficult to isolate faults that appear in the
dynamics.

Residuals can also be generated by a non-linear dynamic model of
the plant that approximates a non-linear dynamic system by local lin-
ear models. Such a model can be obtained by Product space clustering
[Babuska, 1998], or tree-like algorithms (LOLIMOT algorithm by Nelles et
al., [Nelles and Isermann, 1996]). Each local model is a linear approximation
of the process in an I/P subspace and the selection of the local model is fuzzy.
The output of such a model can be described by:

_ 210:1 a;(us) fi

(2.73)

Zi:l Q; (us)
where f; is the i—th local linear model given by:
fi= Y bigult—k)+ > aip ylt —k) +c; (2.75)
k=0 k=0

aik, bk and ¢; are the parameters of the i—th model, u, is the I/P subspace
defining the operating point, «; is the degree to which the i—th local model
is valid at this operating point.
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From a; 1, b; , and ¢;, physical parameters like time constants, static gains,
offsets, etc. [Fissel et al., 1997] can be extracted for each operating point and
can be compared with the parameters estimated online. This approach heavily
depends on the accuracy of the non-linear dynamic model described above.
Also the output error should be minimum when operated in parallel to the
system. Moreover, this method requires that there is sufficient excitation at
each operating point for online estimation of parameters. The TSK NF based
FDI scheme is depicted in Figure 2.19.
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Fig. 2.19. TSK NF based FDI scheme.

2.9 Summary

This Chapter has presented a tutorial treatment on the basis principles of
model-based FDI.

The FDI problem has been formalised in a uniform framework by pre-
senting a mathematical description and definition. Within this framework,
the residual generation has been identified as a central issue in model-based
FDI. By choosing the proper design approach, the FDI task can be performed.

The residual generator has been summarised in different residual genera-
tion structures. The ways of designing residuals for isolation have also been
discussed. The most commonly used residual generation techniques have been
introduced by presenting related problems and discussing the applicability of
model-based FDI methods.

It is worth noting that the success of fault diagnosis depends on the quality
of the residuals. Successful diagnosis requires residual signals which should
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be robust with respect to modelling uncertainty. The robust FDI problem
has been also discussed in this chapter and the implementation of a robust
residual generator will be shown in the following chapters of the book.

Other FDI methods such as fuzzy logic, qualitative modelling and NN
have been briefly discussed and the concept of integrated knowledge—based
fault diagnosis, utilising both analytical and heuristic information has been
presented.
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