

FISICA GENERALE I INGEGNERIA MECCANICA	
Data	

Problema 60

Sia data la seguente funzione bi-gaussiana:

$$f(x) = A \left[e^{-\frac{(x-1)^2}{2}} + e^{-\frac{(x+1)^2}{2}} \right]$$

- (a) Determinare la costante A affinché f(x) sia una distribuzione.
- (b) Calcolare il valore medio della ditribuzione, la (o le) mode e la mediana.
- (c) Calcolare la probabilità di ottenere un'osservazione inferione a 1.

Problema 61

Sia $x=(10.5\pm0.5)$ cm e $y=(5.0\pm0.2)$ cm. Nel caso in cui non si accerti che le incertezze sono indipendenti, determinare l'incertezza assoluta e relativa per:

- (a) la somma s=x+y e la differenza d=x-y;
- (b) il prodotto p=xy e il quoziente q=x/y.

Problema 62

Riconsiderare il problema 1 nel caso di incertezze indipendenti, verificando che queste incertezze sono non superiori a quelle precedentemente ricavate.

Problema 63

Il periodo di un pendolo semplice, T, è descritto dalla seguente relazione nel caso di piccole oscillazioni:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

dove l è la lunghezza del filo e g è l'accelerazione di gravità.

- (a) Si sfrutti tale relazione per calcolare g, avendo misurato l=(50.0±0.1) cm e T=(1.42±0.01) s. Il valore del periodo è stato ottenuto mediando su un certo numero di misurazioni.
- (b) Dire se il valore ricavato è attendibile.

FISICA GENERALE I INGEGNERIA MECCANICA
Data

Problema 64

Si consideri un punto materiale, di massa $m=(0.230\pm0.001)$ kg, vincolato da una molla, di costante elastica $k=(1.03\pm0.01)$ N/m, ad un muro. Il punto materiale si muove senza attrito su un piano orizzontale. All'istante iniziale il punto materiale è in quiete e la molla è dilatata di una quantità $x_0=(0.698\pm0.002)$ m mentre ad un dato istante la particella si muove e la misura della velocità fornisce $v=(0.89\pm0.01)$ m/s nella posizione $x=(0.551\pm0.005)$ m.

- (d) Calcolare le incertezze sull'energia meccanica nei due istanti di tempo.
- (e) Dire se il teorema di conservazione dell'energia meccanica risulta verificato.

Esercizio 40

Riscrivere le seguenti equazioni in maniera appropriata, utilizzando la notazione scientifica:

```
x=(3.323\pm1.4) mm;

t=(1234567\pm54321) s;

\lambda=(5.33\times10^{-7}\pm3.21\times10^{-9}) m;

r=(0.000000538\pm0.00000003) mm.
```

Problema 65

Per determinare l'altezza di una torre, un topografo misura con un telemetro la sua distanza dalla torre $x=(85.0\pm0.4)$ m e con un goniometro l'angolo sotteso $\theta=(0.285\pm0.001)$ rad. L'altezza h della torre è quindi data dalla formula:

$$h = x \tan \theta$$

(a) Calcolare l'altezza h comprensiva dell'incertezza assoluta.

Esercizio 41

Si vuole calcolare la velocità v di atterraggio di un grave lasciato cadere da una quota $h=(10.0\pm0.1)$ m in un campo di gravità uniforme che imprime una accelerazione $g=(9.81\pm0.01)$ m/s².

$$v = \sqrt{2gh}$$

- (a) Calcolare il valore di v comprensivo dell'incertezza assoluta.
- (b) Determinare anche l'incertezza relativa.